Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 358 - 371
DOI https://doi.org/10.1051/ps/2010007
Published online 05 January 2012
  1. E. Bacry and J.F. Muzy, Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (2003) 449–475. [CrossRef] [MathSciNet]
  2. E. Bacry, A. Kozhemyak and J.-F. Muzy, Continuous cascade models for asset returns. J. Econ. Dyn. Control 32 (2008) 156–199. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  3. J. Barral and B.B. Mandelbrot, Multifractal products of cylindrical pulses. Probab. Theory Relat. Fields 124 (2002) 409–430. [CrossRef]
  4. I. Benjamini and O. Schramm, KPZ in one dimensional random geometry of multiplicative cascades. Com. Math. Phys. 289 (2009) 653–662. [CrossRef]
  5. P. Billingsley, Ergodic Theory and Information. Wiley New York (1965).
  6. B. Castaing, Y. Gagne and E. Hopfinger, Velocity probability density functions of high Reynolds number turbulence. Physica D 46 (1990) 177–200. [CrossRef]
  7. F. David, Conformal Field Theories Coupled to 2-D Gravity in the Conformal Gauge. Mod. Phys. Lett. A 3 (1988).
  8. J. Duchon, R. Robert and V. Vargas, Forecasting volatility with the multifractal random walk model, to appear in Mathematical Finance, available at http://arxiv.org/abs/0801.4220.
  9. B. Duplantier and S. Sheffield, in preparation (2008).
  10. K.J. Falconer, The geometry of fractal sets. Cambridge University Press (1985).
  11. U. Frisch, Turbulence. Cambridge University Press (1995).
  12. J.-P. Kahane, Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (1985) 105–150. [MathSciNet]
  13. V.G. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov, Fractal structure of 2D-quantum gravity. Modern Phys. Lett A 3 (1988) 819–826. [CrossRef] [MathSciNet]
  14. G. Lawler, Conformally Invariant Processes in the Plane. A.M.S (2005).
  15. Q. Liu, On generalized multiplicative cascades. Stochastic Processes their Appl.. 86 (2000) 263–286.
  16. B.B. Mandelbrot, A possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence, Statistical Models and Turbulence, La Jolla, CA, Lecture Notes in Phys. No. 12. Springer (1972) 333–335.
  17. B.B. Mandelbrot, Multiplications aléatoires et distributions invariantes par moyenne pondérée aléatoire. CRAS, Paris 278 (1974) 289–292, 355–358.
  18. B. Rajput and J. Rosinski, Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82 (1989) 451–487. [CrossRef] [MathSciNet]
  19. R. Robert and V. Vargas, Gaussian Multiplicative Chaos revisited, available on arxiv at the URL http://arxiv.org/abs/0807.1036v1, to appear in the Annals of Probability.
  20. S. Sheffield, Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139 (1989) 521–541. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.