Free Access
Volume 14, 2010
Page(s) 117 - 150
Published online 10 May 2010
  1. D. Aldous and P. Diaconis, Strong uniform times and finite random walks. Adv. Appl. Math. 8 (1987) 69–97. [CrossRef] [Google Scholar]
  2. D. Aldous and J. Fill, Reversible Markov chains and random walks on graphs. Monograph in preparation, available on the web site:∼aldous/RWG/book.html (1994-2002). [Google Scholar]
  3. R.F. Botta, C.M. Harris and W.G. Marchal, Characterizations of generalized hyperexponential distribution functions. Commun. Statist. Stoch. Models 3 (1987) 115–148. [CrossRef] [Google Scholar]
  4. C. Commault and S. Mocanu, Phase-type distributions and representations: some results and open problems for system theory. Int. J. Control 76 (2003) 566–580. [CrossRef] [Google Scholar]
  5. P. Diaconis and J.A. Fill, Strong stationary times via a new form of duality. Ann. Probab. 18 (1990) 1483–1522. [CrossRef] [MathSciNet] [Google Scholar]
  6. P. Diaconis and L. Miclo, On times to quasi-stationarity for birth and death processes. J. Theoret. Probab. 22 (2009) 558–586. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Diaconis and L. Saloff-Coste, Separation cut-offs for birth and death chains. Ann. Appl. Probab. 16 (2006) 2098–2122. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Ding, E. Lubetzky and Y. Peres, Total variation cutoff in birth-and-death chains. Probab. Theory Relat. Fields 146 (2010) 61–85. [CrossRef] [Google Scholar]
  9. P.D. Egleston, T.D. Lenker and S.K. Narayan, The nonnegative inverse eigenvalue problem. Linear Algebra Appl. 379 (2004) 475–490. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.A. Fill, Strong stationary duality for continuous-time Markov chains, Part I: Theory. J. Theoret. Probab. 5 (1992) 45–70. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.A. Fill, The passage time distribution for a birth-and-death chain: Strong stationary duality gives a first stochastic proof. J. Theoret. Probab. 22 (2009) 543–557. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.A. Fill, On hitting times and fastest strong stationary times for skip-free processes. J. Theoret. Probab. 22 (2009) 587–600. [CrossRef] [MathSciNet] [Google Scholar]
  13. Qi-Ming He and Hanqin Zhang, Spectral polynomial algorithms for computing bi-diagonal representations for phase type distributions and matrix-exponential distributions. Stoch. Models 22 (2006) 289–317. [CrossRef] [MathSciNet] [Google Scholar]
  14. Qi-Ming He and Hanqin Zhang, PH-invariant polytopes and Coxian representations of phase type distributions. Stoch. Models 22 (2006) 383–409. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Karlin and J. McGregor, Coincidence properties of birth and death processes. Pacific J. Math. 9 (1959) 1109–1140. [MathSciNet] [Google Scholar]
  16. T. Kato, Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin (1995). Reprint of the 1980 edition. [Google Scholar]
  17. J. Keilson, Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes. J. Appl. Probab. 8 (1971) 391–398. [CrossRef] [Google Scholar]
  18. J.T. Kent, Eigenvalue expansions for diffusion hitting times, Z. Wahrsch. Verw. Gebiete 52 (1980) 309–319. [Google Scholar]
  19. J.T. Kent, The spectral decomposition of a diffusion hitting time. Ann. Probab. 10 (1982) 207–219. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.T. Kent, The appearance of a multivariate exponential distribution in sojourn times for birth-death and diffusion processes. In Probability, statistics and analysis. London Math. Soc. Lect. Note Ser. 79. Cambridge Univ. Press, Cambridge (1983) 161–179. [Google Scholar]
  21. C.A. Micchelli and R.A. Willoughby, On functions which preserve the class of Stieltjes matrices. Linear Algebra Appl. 23 (1979) 141–156. [CrossRef] [MathSciNet] [Google Scholar]
  22. M.F. Neuts, Matrix-geometric solutions in stochastic models, Johns Hopkins Series in the Mathematical Sciences: An algorithmic approach, Vol. 2. Johns Hopkins University Press, Baltimore, MD (1981). [Google Scholar]
  23. C.A. O'Cinneide, Characterization of phase-type distributions. Commun. Statist. Stoch. Models 6 (1990) 1–57. [CrossRef] [Google Scholar]
  24. C.A. O'Cinneide, Phase-type distributions and invariant polytopes. Adv. Appl. Probab. 23 (1991) 515–535. [CrossRef] [Google Scholar]
  25. C.A. O'Cinneide, Phase-type distributions: open problems and a few properties. Commun. Statist. Stoch. Models 15 (1999) 731–757. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.