Free Access
Volume 14, 2010
Page(s) 117 - 150
Published online 10 May 2010
  1. D. Aldous and P. Diaconis, Strong uniform times and finite random walks. Adv. Appl. Math. 8 (1987) 69–97. [CrossRef]
  2. D. Aldous and J. Fill, Reversible Markov chains and random walks on graphs. Monograph in preparation, available on the web site:∼aldous/RWG/book.html (1994-2002).
  3. R.F. Botta, C.M. Harris and W.G. Marchal, Characterizations of generalized hyperexponential distribution functions. Commun. Statist. Stoch. Models 3 (1987) 115–148. [CrossRef]
  4. C. Commault and S. Mocanu, Phase-type distributions and representations: some results and open problems for system theory. Int. J. Control 76 (2003) 566–580. [CrossRef]
  5. P. Diaconis and J.A. Fill, Strong stationary times via a new form of duality. Ann. Probab. 18 (1990) 1483–1522. [CrossRef] [MathSciNet]
  6. P. Diaconis and L. Miclo, On times to quasi-stationarity for birth and death processes. J. Theoret. Probab. 22 (2009) 558–586. [CrossRef] [MathSciNet]
  7. P. Diaconis and L. Saloff-Coste, Separation cut-offs for birth and death chains. Ann. Appl. Probab. 16 (2006) 2098–2122. [CrossRef] [MathSciNet]
  8. J. Ding, E. Lubetzky and Y. Peres, Total variation cutoff in birth-and-death chains. Probab. Theory Relat. Fields 146 (2010) 61–85. [CrossRef]
  9. P.D. Egleston, T.D. Lenker and S.K. Narayan, The nonnegative inverse eigenvalue problem. Linear Algebra Appl. 379 (2004) 475–490. [CrossRef] [MathSciNet]
  10. J.A. Fill, Strong stationary duality for continuous-time Markov chains, Part I: Theory. J. Theoret. Probab. 5 (1992) 45–70. [CrossRef] [MathSciNet]
  11. J.A. Fill, The passage time distribution for a birth-and-death chain: Strong stationary duality gives a first stochastic proof. J. Theoret. Probab. 22 (2009) 543–557. [CrossRef] [MathSciNet]
  12. J.A. Fill, On hitting times and fastest strong stationary times for skip-free processes. J. Theoret. Probab. 22 (2009) 587–600. [CrossRef] [MathSciNet]
  13. Qi-Ming He and Hanqin Zhang, Spectral polynomial algorithms for computing bi-diagonal representations for phase type distributions and matrix-exponential distributions. Stoch. Models 22 (2006) 289–317. [CrossRef] [MathSciNet]
  14. Qi-Ming He and Hanqin Zhang, PH-invariant polytopes and Coxian representations of phase type distributions. Stoch. Models 22 (2006) 383–409. [CrossRef] [MathSciNet]
  15. S. Karlin and J. McGregor, Coincidence properties of birth and death processes. Pacific J. Math. 9 (1959) 1109–1140. [MathSciNet]
  16. T. Kato, Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin (1995). Reprint of the 1980 edition.
  17. J. Keilson, Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes. J. Appl. Probab. 8 (1971) 391–398. [CrossRef]
  18. J.T. Kent, Eigenvalue expansions for diffusion hitting times, Z. Wahrsch. Verw. Gebiete 52 (1980) 309–319.
  19. J.T. Kent, The spectral decomposition of a diffusion hitting time. Ann. Probab. 10 (1982) 207–219. [CrossRef] [MathSciNet]
  20. J.T. Kent, The appearance of a multivariate exponential distribution in sojourn times for birth-death and diffusion processes. In Probability, statistics and analysis. London Math. Soc. Lect. Note Ser. 79. Cambridge Univ. Press, Cambridge (1983) 161–179.
  21. C.A. Micchelli and R.A. Willoughby, On functions which preserve the class of Stieltjes matrices. Linear Algebra Appl. 23 (1979) 141–156. [CrossRef] [MathSciNet]
  22. M.F. Neuts, Matrix-geometric solutions in stochastic models, Johns Hopkins Series in the Mathematical Sciences: An algorithmic approach, Vol. 2. Johns Hopkins University Press, Baltimore, MD (1981).
  23. C.A. O'Cinneide, Characterization of phase-type distributions. Commun. Statist. Stoch. Models 6 (1990) 1–57. [CrossRef]
  24. C.A. O'Cinneide, Phase-type distributions and invariant polytopes. Adv. Appl. Probab. 23 (1991) 515–535. [CrossRef]
  25. C.A. O'Cinneide, Phase-type distributions: open problems and a few properties. Commun. Statist. Stoch. Models 15 (1999) 731–757. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.