Free Access
Issue
ESAIM: PS
Volume 14, 2010
Page(s) 151 - 172
DOI https://doi.org/10.1051/ps:2008025
Published online 10 May 2010
  1. D. Andrews, Non strong mixing autoregressive processes. J. Appl. Probab. 21 (1984) 930–934. [CrossRef] [MathSciNet]
  2. D. Bosq and D. Guegan, Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system. Stat. Probab. Lett. 25 (1995) 201–212. [CrossRef] [MathSciNet]
  3. F. Comte and F. Merlevède, Adaptive estimation of the stationary density of discrete and continuous time mixing processes. ESAIM: PS 6 (2002) 211–238. [CrossRef] [EDP Sciences]
  4. I. Daubechies, Ten Lectures on Wavelets, volume 61. SIAM Press (1992).
  5. J. Dedecker and C. Prieur, New dependence coefficients: Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2005) 203–235. [CrossRef]
  6. J. Dedecker and C. Prieur, An empirical central limit theorem for dependent sequences. Stoch. Process. Appl. 117 (2007) 121–142. [CrossRef]
  7. J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak Dependence: Models, Theory and Applications. Springer-Verlag (2007).
  8. D. Donoho, I. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Stat. 24 (1996) 508–539. [CrossRef] [MathSciNet]
  9. P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stoch. Process. Appl. 84 (1999) 313–342. [CrossRef] [MathSciNet]
  10. P. Doukhan and M. Neumann, A Bernstein type inequality for times series. Stoch. Process. Appl. 117 (2007) 878–903. [CrossRef]
  11. P. Doukhan, G. Teyssière and P. Winant, Vector valued ARCH infinity processes, in Dependence in Probability and Statistics . Lect. Notes Statist. Springer, New York (2006).
  12. P. Doukhan and L. Truquet, A fixed point approach to model random fields. Alea 2 (2007) 111–132.
  13. P. Doukhan and O. Wintenberger, Weakly dependent chains with infinite memory. Stoch. Process. Appl. 118 (2008) 1997–2013. [CrossRef]
  14. P. Doukhan and O. Wintenberger, Invariance principle for new weakly dependent stationary models. Probab. Math. Statist. 27 (2007) 45–73. [MathSciNet]
  15. S. Gouëzel, Central limit theorem and stable laws for intermittent maps. Probab. Theory Relat. Fields 128 (2004) 82–122. [CrossRef]
  16. W. Hardle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelets Approximation and Statistical Applications. Lect. Notes Statist. 129. Springer-Verlag (1998).
  17. A. Juditsky and S. Lambert-Lacroix, On minimax density estimation on Formula . Bernoulli, 10 (2004) 187–220.
  18. C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency. Ergodic Theory Dynam. Syst. 19 (1999) 671–686. [CrossRef] [MathSciNet]
  19. S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intelligence 11 (1989) 674–693. [NASA ADS] [CrossRef]
  20. V. Maume-Deschamps, Exponential inequalities and functional estimations for weak dependent data; applications to dynamical systems. Stoch. Dynam. 6 (2006) 535–560.
  21. Y. Meyer, Wavelets and Operators. Cambridge University Press (1992).
  22. C. Prieur, Applications statistiques de suites faiblement dépendantes et de systèmes dynamiques. Ph.D. thesis, CREST, 2001.
  23. N. Ragache and O. Wintenberger, Convergence rates for density estimators of weakly dependent time series, in Dependence in Probability and Statistics , P. Bertail, P. Doukhan, and P. Soulier (Eds.). Lect. Notes Statist. 187. Springer, New York (2006), pp. 349–372.
  24. K. Tribouley and G. Viennet, Formula -adaptive density estimation in a β-mixing framework. Ann. Inst. H. Poincaré, B 34 (1998) 179–208.
  25. M.-L. Vanharen, Estimation par ondelettes dans les systèmes dynamiques. C. R. Acad. Sci. Paris 342 (2006) 523–525.
  26. M. Vannucci, Nonparametric density estimation using wavelets. Tech. Rep., Texas A and M University, 1998.
  27. M. Viana, Stochastic dynamics of deterministic systems. Available at http://w3.impa.br/~viana (1997).
  28. B. Vidakovic, Pollen bases and Daubechies-Lagarias algorithm in MATLAB (2002). Available at http://www2.isye.gatech.edu/~brani/datasoft/DL.pdf.
  29. Wavelab. http://www-stat.stanford.edu/~wavelab/.
  30. L. Young, Recurrence times and rates of mixing. Isr. J. Math. 110 (1999) 0021–2172.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.