Free Access
Issue
ESAIM: PS
Volume 14, 2010
Page(s) 151 - 172
DOI https://doi.org/10.1051/ps:2008025
Published online 10 May 2010
  1. D. Andrews, Non strong mixing autoregressive processes. J. Appl. Probab. 21 (1984) 930–934. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Bosq and D. Guegan, Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system. Stat. Probab. Lett. 25 (1995) 201–212. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Comte and F. Merlevède, Adaptive estimation of the stationary density of discrete and continuous time mixing processes. ESAIM: PS 6 (2002) 211–238. [CrossRef] [EDP Sciences] [Google Scholar]
  4. I. Daubechies, Ten Lectures on Wavelets, volume 61. SIAM Press (1992). [Google Scholar]
  5. J. Dedecker and C. Prieur, New dependence coefficients: Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2005) 203–235. [CrossRef] [Google Scholar]
  6. J. Dedecker and C. Prieur, An empirical central limit theorem for dependent sequences. Stoch. Process. Appl. 117 (2007) 121–142. [CrossRef] [Google Scholar]
  7. J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak Dependence: Models, Theory and Applications. Springer-Verlag (2007). [Google Scholar]
  8. D. Donoho, I. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Stat. 24 (1996) 508–539. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stoch. Process. Appl. 84 (1999) 313–342. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Doukhan and M. Neumann, A Bernstein type inequality for times series. Stoch. Process. Appl. 117 (2007) 878–903. [CrossRef] [Google Scholar]
  11. P. Doukhan, G. Teyssière and P. Winant, Vector valued ARCH infinity processes, in Dependence in Probability and Statistics . Lect. Notes Statist. Springer, New York (2006). [Google Scholar]
  12. P. Doukhan and L. Truquet, A fixed point approach to model random fields. Alea 2 (2007) 111–132. [Google Scholar]
  13. P. Doukhan and O. Wintenberger, Weakly dependent chains with infinite memory. Stoch. Process. Appl. 118 (2008) 1997–2013. [CrossRef] [Google Scholar]
  14. P. Doukhan and O. Wintenberger, Invariance principle for new weakly dependent stationary models. Probab. Math. Statist. 27 (2007) 45–73. [MathSciNet] [Google Scholar]
  15. S. Gouëzel, Central limit theorem and stable laws for intermittent maps. Probab. Theory Relat. Fields 128 (2004) 82–122. [CrossRef] [Google Scholar]
  16. W. Hardle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelets Approximation and Statistical Applications. Lect. Notes Statist. 129. Springer-Verlag (1998). [Google Scholar]
  17. A. Juditsky and S. Lambert-Lacroix, On minimax density estimation on Formula . Bernoulli, 10 (2004) 187–220. [Google Scholar]
  18. C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency. Ergodic Theory Dynam. Syst. 19 (1999) 671–686. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intelligence 11 (1989) 674–693. [NASA ADS] [CrossRef] [Google Scholar]
  20. V. Maume-Deschamps, Exponential inequalities and functional estimations for weak dependent data; applications to dynamical systems. Stoch. Dynam. 6 (2006) 535–560. [Google Scholar]
  21. Y. Meyer, Wavelets and Operators. Cambridge University Press (1992). [Google Scholar]
  22. C. Prieur, Applications statistiques de suites faiblement dépendantes et de systèmes dynamiques. Ph.D. thesis, CREST, 2001. [Google Scholar]
  23. N. Ragache and O. Wintenberger, Convergence rates for density estimators of weakly dependent time series, in Dependence in Probability and Statistics , P. Bertail, P. Doukhan, and P. Soulier (Eds.). Lect. Notes Statist. 187. Springer, New York (2006), pp. 349–372. [Google Scholar]
  24. K. Tribouley and G. Viennet, Formula -adaptive density estimation in a β-mixing framework. Ann. Inst. H. Poincaré, B 34 (1998) 179–208. [Google Scholar]
  25. M.-L. Vanharen, Estimation par ondelettes dans les systèmes dynamiques. C. R. Acad. Sci. Paris 342 (2006) 523–525. [Google Scholar]
  26. M. Vannucci, Nonparametric density estimation using wavelets. Tech. Rep., Texas A and M University, 1998. [Google Scholar]
  27. M. Viana, Stochastic dynamics of deterministic systems. Available at http://w3.impa.br/~viana (1997). [Google Scholar]
  28. B. Vidakovic, Pollen bases and Daubechies-Lagarias algorithm in MATLAB (2002). Available at http://www2.isye.gatech.edu/~brani/datasoft/DL.pdf. [Google Scholar]
  29. Wavelab. http://www-stat.stanford.edu/~wavelab/. [Google Scholar]
  30. L. Young, Recurrence times and rates of mixing. Isr. J. Math. 110 (1999) 0021–2172. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.