Free Access
Issue
ESAIM: PS
Volume 14, 2010
Page(s) 343 - 381
DOI https://doi.org/10.1051/ps/2009003
Published online 22 December 2010
  1. R. Azencott, Grandes déviations et applications, in École d'Eté de Probabilités de Saint-Flour VIII (1978). [Google Scholar]
  2. J.M. Borwein and A.S. Lewis, Strong rotundity and optimization. SIAM J. Optim. 1 (1994) 146–158. [CrossRef] [Google Scholar]
  3. C. Boucher, R.S. Ellis and B. Turkington, Spatializing random measures: doubly indexed processes and the large deviation principle. Ann. Probab. 27 (1999) 297–324. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Csiszár, I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975) 146–158. [CrossRef] [Google Scholar]
  5. I. Csiszár, Sanov property, generalized I-projection and a conditional limit theorem. Ann. Probab. 12 (1984) 768–793. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Csiszár, Generalized projections for non-negative functions. Acta Math. Hungar. 68 (1995) 161–185. [CrossRef] [MathSciNet] [Google Scholar]
  7. I. Csiszár, F. Gamboa and E. Gassiat, MEM pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inform. Theory 45 (1999) 2253–2270. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. Dacunha-Castelle and F. Gamboa, Maximum d'entropie et problème des moments. Ann. Inst. H. Poincaré. Probab. Statist. 26 (1990) 567–596. [MathSciNet] [Google Scholar]
  9. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Second edition. Appl. Math. 38. Springer-Verlag (1998). [Google Scholar]
  10. U. Einmahl and J. Kuelbs, Dominating points and large deviations for random vectors. Probab. Theory Relat. Fields 105 (1996) 529–543. [CrossRef] [Google Scholar]
  11. R.S. Ellis, J. Gough and J.V. Puli, The large deviations principle for measures with random weights. Rev. Math. Phys. 5 (1993) 659–692. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Gamboa and E. Gassiat, Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Statist. 25 (1997) 328–350. [CrossRef] [MathSciNet] [Google Scholar]
  13. H. Gzyl, The Method of Maximum Entropy. World Scientific (1994). [Google Scholar]
  14. J. Kuelbs, Large deviation probabilities and dominating points for open convex sets: nonlogarithmic behavior. Ann. Probab. 28 (2000) 1259–1279. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Léonard, Large deviations for Poisson random measures and processes with independent increments. Stoch. Proc. Appl. 85 (2000) 93–121. [CrossRef] [Google Scholar]
  16. C. Léonard, Convex minimization problems with weak constraint qualifications. J. Convex Anal. 17 (2010) 321–348. [Google Scholar]
  17. C. Léonard, Minimization of energy functionals applied to some inverse problems. J. Appl. Math. Optim. 44 (2001) 273–297. [CrossRef] [Google Scholar]
  18. C. Léonard, Minimizers of energy functionals under not very integrable constraints. J. Convex Anal. 10 (2003) 63–88. [Google Scholar]
  19. C. Léonard, Minimization of entropy functionals. J. Math. Anal. Appl. 346 (2008) 183–204. [CrossRef] [MathSciNet] [Google Scholar]
  20. C. Léonard and J. Najim, An extension of Sanov's theorem: application to the Gibbs conditioning principle. Bernoulli 8 (2002) 721–743. [Google Scholar]
  21. J. Najim, A Cramér type theorem for weighted random variables. Electron. J. Probab. 7 (2002) 1–32. [Google Scholar]
  22. P. Ney, Dominating points and the asymptotics of large deviations for random walks on Rd. Ann. Probab. 11 (1983) 158–167. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Ney, Convexity and large deviations. Ann. Probab. 12 (1984) 903–906. [CrossRef] [MathSciNet] [Google Scholar]
  24. M.M. Rao and Z.D. Ren, Theory of Orlicz spaces, Pure Appl. Math. 146. Marcel Dekker, Inc. (1991). [Google Scholar]
  25. R.T. Rockafellar, Integrals which are convex functionals. Pacific J. Math. 24 (1968) 525–539. [Google Scholar]
  26. R.T. Rockafellar, Conjugate Duality and Optimization, volume 16 of Regional Conf. Series in Applied Mathematics. SIAM, Philadelphia (1974). [Google Scholar]
  27. R.T. Rockafellar and R. Wets, Variational Analysis, in Grundlehren der Mathematischen Wissenschaften, volume 317. Springer (1998). [Google Scholar]
  28. A. Schied, Cramér's condition and Sanov's theorem. Statist. Probab. Lett. 39 (1998) 55–60. [CrossRef] [MathSciNet] [Google Scholar]
  29. C.R. Smith, G.J. Erickson and P.O. Neudorfer (Eds.). Maximum Entropy and Bayesian Methods, Proc. of 11th Int. Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis, Seattle, 1991. Kluwer. [Google Scholar]
  30. D.W. Stroock and O. Zeitouni, Microcanonical distributions, Gibbs states and the equivalence of ensembles, in Festchrift in Honour of F. Spitzer, edited by R. Durrett and H. Kesten. Birkhaüser (1991) 399–424. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.