Free Access
Issue
ESAIM: PS
Volume 14, 2010
Page(s) 382 - 408
DOI https://doi.org/10.1051/ps/2009001
Published online 22 December 2010
  1. S. Allassonnière, Y. Amit and A. Trouvé, Toward a coherent statistical framework for dense deformable template estimation. J. Roy. Stat. Soc. 69 (2007) 3–29. [Google Scholar]
  2. S. Allassonnière, E. Kuhn and A. Trouvé, Map estimation of statistical deformable templates via nonlinear mixed effects models: Deterministic and stochastic approaches. In Proc. Int. Workshop on the Mathematical Foundations of Computational Anatomy (MFCA-2008), edited by X. Pennec and S. Joshi (2008). [Google Scholar]
  3. S. Allassonnière, E. Kuhn and A. Trouvé, Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study. Bernoulli 16 (2010) 641–678. [CrossRef] [MathSciNet] [Google Scholar]
  4. Y. Amit, U. Grenander and M. Piccioni, Structural image restoration through deformable templates. J. Am. Statist. Assoc. 86 (1989) 376–387. [CrossRef] [Google Scholar]
  5. C. Andrieu, R. Moulines and P. Priouret, Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 (2005) 283–312 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  6. T.F. Cootes, G.J. Edwards and C.J. Taylor, Actives appearance models. In 5th Eur. Conf. on Computer Vision, Berlin, Vol. 2, edited by H. Burkhards and B. Neumann. Springer (1998) 484–498. [Google Scholar]
  7. B. Delyon, M. Lavielle and E. Moulines, Convergence of a stochastic approximation version of the EM algorithm. Ann. Statist. 27 (1999) 94–128. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. 1 (1977) 1–22. [Google Scholar]
  9. C. Dorea and L. Zhao, Nonparametric density estimation in hidden Markov models. Statist. Inf. Stoch. Process. 5 (2002) 55–64. [CrossRef] [Google Scholar]
  10. C.A. Glasbey and K.V. Mardia, A penalised likelihood approach to image warping. J. Roy. Statist. Soc., Ser. B 63 (2001) 465–492. [Google Scholar]
  11. J. Glaunès and S. Joshi, Template estimation form unlabeled point set data and surfaces for computational anatomy. In Proc. Int. Workshop on the Mathematical Foundations of Computational Anatomy (MFCA-2006), edited by X. Pennec and S. Joshi (2006) 29–39. [Google Scholar]
  12. U. Grenander, General Pattern Theory. Oxford Science Publications (1993). [Google Scholar]
  13. P. Hall and C.C. Heyde, Martingale limit theory and its application. Probab. Math. Statist. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). [Google Scholar]
  14. E. Kuhn and M. Lavielle, Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM: PS 8 (2004) 115–131 (electronic). [CrossRef] [EDP Sciences] [Google Scholar]
  15. H.J. Kushner and D.S. Clark, Stochastic approximation methods for constrained and unconstrained systems, volume 26 of Appl. Math. Sci. Springer-Verlag, New York (1978). [Google Scholar]
  16. S. Marsland, C. Twining and C. Taylor, A minimum description length objective function for groupwise non rigid image registration. Image and Vision Computing (2007). [Google Scholar]
  17. S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag, London Ltd. (1993). [Google Scholar]
  18. M.I. Miller, T.A. and L. Younes, On the metrics and Euler-Lagrange equations of computational anatomy. Ann. Rev. Biomed. Eng. 4 (2002) 375–405. [CrossRef] [Google Scholar]
  19. C. Robert, Méthodes de Monte Carlo par chaînes de Markov. Statistique Mathématique et Probabilité. [Mathematical Statistics and Probability]. Éditions Économica, Paris (1996). [Google Scholar]
  20. M. Vaillant, I. Miller, M.A. Trouvé and L. Younes, Statistics on diffeomorphisms via tangent space representations. Neuroimage 23 (2004) S161–S169. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.