Free Access
Volume 14, 2010
Page(s) 382 - 408
Published online 22 December 2010
  1. S. Allassonnière, Y. Amit and A. Trouvé, Toward a coherent statistical framework for dense deformable template estimation. J. Roy. Stat. Soc. 69 (2007) 3–29.
  2. S. Allassonnière, E. Kuhn and A. Trouvé, Map estimation of statistical deformable templates via nonlinear mixed effects models: Deterministic and stochastic approaches. In Proc. Int. Workshop on the Mathematical Foundations of Computational Anatomy (MFCA-2008), edited by X. Pennec and S. Joshi (2008).
  3. S. Allassonnière, E. Kuhn and A. Trouvé, Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study. Bernoulli 16 (2010) 641–678. [CrossRef] [MathSciNet]
  4. Y. Amit, U. Grenander and M. Piccioni, Structural image restoration through deformable templates. J. Am. Statist. Assoc. 86 (1989) 376–387. [CrossRef]
  5. C. Andrieu, R. Moulines and P. Priouret, Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 (2005) 283–312 (electronic). [CrossRef] [MathSciNet]
  6. T.F. Cootes, G.J. Edwards and C.J. Taylor, Actives appearance models. In 5th Eur. Conf. on Computer Vision, Berlin, Vol. 2, edited by H. Burkhards and B. Neumann. Springer (1998) 484–498.
  7. B. Delyon, M. Lavielle and E. Moulines, Convergence of a stochastic approximation version of the EM algorithm. Ann. Statist. 27 (1999) 94–128. [CrossRef] [MathSciNet]
  8. A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. 1 (1977) 1–22.
  9. C. Dorea and L. Zhao, Nonparametric density estimation in hidden Markov models. Statist. Inf. Stoch. Process. 5 (2002) 55–64. [CrossRef]
  10. C.A. Glasbey and K.V. Mardia, A penalised likelihood approach to image warping. J. Roy. Statist. Soc., Ser. B 63 (2001) 465–492.
  11. J. Glaunès and S. Joshi, Template estimation form unlabeled point set data and surfaces for computational anatomy. In Proc. Int. Workshop on the Mathematical Foundations of Computational Anatomy (MFCA-2006), edited by X. Pennec and S. Joshi (2006) 29–39.
  12. U. Grenander, General Pattern Theory. Oxford Science Publications (1993).
  13. P. Hall and C.C. Heyde, Martingale limit theory and its application. Probab. Math. Statist. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980).
  14. E. Kuhn and M. Lavielle, Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM: PS 8 (2004) 115–131 (electronic). [CrossRef] [EDP Sciences]
  15. H.J. Kushner and D.S. Clark, Stochastic approximation methods for constrained and unconstrained systems, volume 26 of Appl. Math. Sci. Springer-Verlag, New York (1978).
  16. S. Marsland, C. Twining and C. Taylor, A minimum description length objective function for groupwise non rigid image registration. Image and Vision Computing (2007).
  17. S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag, London Ltd. (1993).
  18. M.I. Miller, T.A. and L. Younes, On the metrics and Euler-Lagrange equations of computational anatomy. Ann. Rev. Biomed. Eng. 4 (2002) 375–405. [CrossRef]
  19. C. Robert, Méthodes de Monte Carlo par chaînes de Markov. Statistique Mathématique et Probabilité. [Mathematical Statistics and Probability]. Éditions Économica, Paris (1996).
  20. M. Vaillant, I. Miller, M.A. Trouvé and L. Younes, Statistics on diffeomorphisms via tangent space representations. Neuroimage 23 (2004) S161–S169. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.