Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 417 - 436
DOI https://doi.org/10.1051/ps:2008019
Published online 22 September 2009
  1. L.A. Bunimovich and Ya.G. Sinai, Markov partitions for dispersed billiards. Commun. Math. Phys. 78 (1980) 247–280. [CrossRef] [MathSciNet] [Google Scholar]
  2. L.A. Bunimovich and Ya.G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78 (1981) 479–497. [CrossRef] [MathSciNet] [Google Scholar]
  3. L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Markov partitions for two-dimensional hyperbolic billiards. Russ. Math. Surv. 45 (1990) 105–152. [CrossRef] [MathSciNet] [Google Scholar]
  4. L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv. 46 (1991) 47–106. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Campanino and D. Pétritis, Random walks on randomly oriented lattices. Markov Process. Relat. Fields 9 (2003) 391–412. [Google Scholar]
  6. N.I. Chernov, Advanced statistical properties of dispersing billiards. J. Stat. Phys. 122 (2006) 1061–1094. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Gallavotti and D. Ornstein, Billiards and Bernoulli schemes. Commun. Math. Phys. 38 (1974) 83–101. [CrossRef] [Google Scholar]
  8. G. Grimmett, Percolation, second edition. Springer, Berlin (1999). [Google Scholar]
  9. N. Guillotin-Plantard and A. Le Ny, Transient random walks on 2d-oriented lattices. Theory Probab. Appl. 52 (2007) 815–826. [Google Scholar]
  10. B.D. Hughes, Random walks and random environments. Vol. 2: Random environments. Oxford Science Publications, Clarendon Press, Oxford. (1996) xxiv. [Google Scholar]
  11. I.A. Ibragimov, Some limit theorems for stationary processes. Th. Probab. Appl. 7 (1962) 349–382. [CrossRef] [Google Scholar]
  12. C. Jan, Vitesse de convergence dans le TCL pour des chaînes de Markov et certains processus associés à des systèmes dynamiques. C. R. Acad. Sci. Paris Ser. I Math. 331 (2000) 395–398. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Jan, Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires. Thèse, Université de Rennes 1, 2001. [Google Scholar]
  14. H. Kesten and F. Spitzer, A limit theorem related to a new class of self similar processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979) 5–25. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Le Borgne, Exemples de systèmes dynamiques quasi-hyperboliques à décorrélations lentes. C. R. Acad. Sci. Paris Ser. I Math. 343 (2006) 125–128. [Google Scholar]
  16. S. Le Borgne and F. Pène, Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques. Bull. Soc. Math. France 133 (2005) 395–417. [MathSciNet] [Google Scholar]
  17. Ya.G. Sinai, Dynamical systems with elastic reflections. Russ. Math. Surv. 25 (1970) 137–189. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Spitzer, Principles of random walk. Univ. Ser. Higher Math., Van Nostrand, Princeton (1964). [Google Scholar]
  19. L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147 (1998) 585–650. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.