Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 417 - 436
DOI https://doi.org/10.1051/ps:2008019
Published online 22 September 2009
  1. L.A. Bunimovich and Ya.G. Sinai, Markov partitions for dispersed billiards. Commun. Math. Phys. 78 (1980) 247–280. [CrossRef] [MathSciNet]
  2. L.A. Bunimovich and Ya.G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78 (1981) 479–497. [CrossRef] [MathSciNet]
  3. L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Markov partitions for two-dimensional hyperbolic billiards. Russ. Math. Surv. 45 (1990) 105–152. [CrossRef] [MathSciNet]
  4. L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv. 46 (1991) 47–106. [CrossRef] [MathSciNet]
  5. M. Campanino and D. Pétritis, Random walks on randomly oriented lattices. Markov Process. Relat. Fields 9 (2003) 391–412.
  6. N.I. Chernov, Advanced statistical properties of dispersing billiards. J. Stat. Phys. 122 (2006) 1061–1094. [CrossRef] [MathSciNet]
  7. G. Gallavotti and D. Ornstein, Billiards and Bernoulli schemes. Commun. Math. Phys. 38 (1974) 83–101. [CrossRef]
  8. G. Grimmett, Percolation, second edition. Springer, Berlin (1999).
  9. N. Guillotin-Plantard and A. Le Ny, Transient random walks on 2d-oriented lattices. Theory Probab. Appl. 52 (2007) 815–826.
  10. B.D. Hughes, Random walks and random environments. Vol. 2: Random environments. Oxford Science Publications, Clarendon Press, Oxford. (1996) xxiv.
  11. I.A. Ibragimov, Some limit theorems for stationary processes. Th. Probab. Appl. 7 (1962) 349–382. [CrossRef]
  12. C. Jan, Vitesse de convergence dans le TCL pour des chaînes de Markov et certains processus associés à des systèmes dynamiques. C. R. Acad. Sci. Paris Ser. I Math. 331 (2000) 395–398. [CrossRef] [MathSciNet]
  13. C. Jan, Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires. Thèse, Université de Rennes 1, 2001.
  14. H. Kesten and F. Spitzer, A limit theorem related to a new class of self similar processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979) 5–25. [CrossRef] [MathSciNet]
  15. S. Le Borgne, Exemples de systèmes dynamiques quasi-hyperboliques à décorrélations lentes. C. R. Acad. Sci. Paris Ser. I Math. 343 (2006) 125–128.
  16. S. Le Borgne and F. Pène, Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques. Bull. Soc. Math. France 133 (2005) 395–417. [MathSciNet]
  17. Ya.G. Sinai, Dynamical systems with elastic reflections. Russ. Math. Surv. 25 (1970) 137–189. [CrossRef] [MathSciNet]
  18. F. Spitzer, Principles of random walk. Univ. Ser. Higher Math., Van Nostrand, Princeton (1964).
  19. L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147 (1998) 585–650. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.