Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 409 - 416
DOI https://doi.org/10.1051/ps:2008020
Published online 22 September 2009
  1. N. Bissantz, B. Mair and A. Munk, A statistical stopping rule for MLEM reconstructions in PET. IEEE Nucl. Sci. Symp. Conf. Rec. 8 (2008) 4198–4200. [Google Scholar]
  2. M. Csörgö and P. Révész, Strong approximations in probability and statistics. Academic Press, New York-San Francisco-London (1981). [Google Scholar]
  3. P.L. Davies and A. Kovac, Local extremes, runs, strings and multiresolution (with discussion). Ann. Statist. 29 (2001) 1–65. [Google Scholar]
  4. P. Deheuvels, On the Erdös-Rényi theorem for random fields and sequences and its relationships with the theory of runs and spacings. Z. Wahrscheinlichkeitstheor. Verw. Geb. 70 (1985) 91–115. [CrossRef] [Google Scholar]
  5. L. Dümbgen and V.G. Spokoiny, Multiscale testing of qualitative hypotheses. Ann. Statist. 29 (2001) 124–152. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Dümbgen and G. Walther, Multiscale inference about a density. Preprint (Extended version: Technical report 56, Univ. of Bern). Ann. Statist. 36 (2008) 1758–1758. [Google Scholar]
  7. P. Erdös and A. Rényi, On a new law of large numbers. J. Anal. Math. 23 (1970) 103–111. [CrossRef] [Google Scholar]
  8. W. Feller, An introduction to probability theory and its applications. Vol. II, second edition. John Wiley and Sons, New York-London-Sydney (1971). [Google Scholar]
  9. D.L. Hanson and R.P. Russo, Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables. Ann. Probab. 11 (1983) 609–623. [CrossRef] [MathSciNet] [Google Scholar]
  10. W. Hinterberger, M. Hintermüller, K. Kunisch, M. von Oehsen and O. Scherzer, Tube methods for BV regularization. J. Math. Imag. Vision 19 (2003) 219–235. [CrossRef] [Google Scholar]
  11. J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV's, and the sample DF, Vol. I. Z. Wahrscheinlichkeitstheor. Verw. Geb. 32 (1975) 111–131. [Google Scholar]
  12. H. Lanzinger and U. Stadtmüller, Maxima of increments of partial sums for certain subexponential distributions. Stoch. Process. Appl. 86 (2000) 307–322. [CrossRef] [Google Scholar]
  13. P. Massart, Strong approximation for multivariate empirical and related processes, via KMT constructions. Ann. Probab. 17 (1989) 266–291. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Révész, Random walk in random and non-random environments. World Scientific (1990). [Google Scholar]
  15. E. Rio, Strong approximation for set-indexed partial sum processes via KMT constructions III. ESAIM: PS 1 (1997) 319–338. [CrossRef] [EDP Sciences] [Google Scholar]
  16. Q.-M. Shao, On a conjecture of Révész. Proc. Amer. Math. Soc. 123 (1995) 575–582. [MathSciNet] [Google Scholar]
  17. D. Siegmund and B. Yakir, Tail probabilities for the null distribution of scanning statistics. Bernoulli 6 (2000) 191–213. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Steinebach, On the increments of partial sum processes with multidimensional indices. Z. Wahrscheinlichkeitstheor. Verw. Geb. 63 (1983) 59–70. [CrossRef] [Google Scholar]
  19. J. Steinebach, On a conjecture of Révész and its analogue for renewal processes, in Asymptotic methods in probability and statistics, Barbara Szyszkowicz Ed., A volume in honour of Miklós Csörgö. ICAMPS '97, an international conference at Carleton Univ., Ottawa, Canada. Elsevier, North-Holland, Amsterdam (1997). [Google Scholar]
  20. S. van de Geer and E. Mammen, Discussion of “Local extremes, strings and multiresolution.” Ann. Statist. 29 (2001) 56–59. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.