Issue |
ESAIM: PS
Volume 1, 1997
|
|
---|---|---|
Page(s) | 319 - 338 | |
DOI | https://doi.org/10.1051/ps:1997112 | |
Published online | 15 August 2002 |
Strong approximation for set-indexed partial sum processes via KMT constructions III
Emmanuel.Rio@math.u-psud.fr
We generalize the results of Komlós, Major and Tusnády concerning the strong approximation of partial sums of independent and identically distributed random variables with a finite r-th moment to the case when the parameter set is two-dimensional. The most striking result is that the rates of convergence are exactly the same as in the one-dimensional case.
Résumé
Nous étendons les résultats de Komlós, Major and Tusnády sur l'approximation forte des sommes partielles de variables aléatoires réelles indépendantes et équidistribuées ayant un moment d'ordre r fini aux processus de sommes partielles avec ensemble d'indices bidimensionnel. La vitesse de convergence obtenue est identique à celle du cas unidimensionnel.
Key words: Set-indexed partial-sum process / functional central limit theorem / invariance principle / strong approximation.
© EDP Sciences, SMAI, 1997
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.