Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 343 - 362
DOI https://doi.org/10.1051/ps:2008016
Published online 21 July 2009
  1. B. Aazhang and M.K. Varanasi, Multistage detection in asynchronous code division multiple acces communications. IEEE Trans. Commun. 38 (1990) 509–519. [CrossRef] [Google Scholar]
  2. S. Amariand and H.-F. Yanai, Auto-associative memory with two-stage dynamics of nonmonotonic neurons. IEEE Trans. Neural Networks 7 (1996) 803–815. [CrossRef] [Google Scholar]
  3. R.K. Bahr and J.S. Sadowski, Direct-sequence spread-spectrum multiple-access communications with random signature sequences: A large deviations analysis. IEEE Trans. Inform. Theory 37 (1991) 514–527. [CrossRef] [Google Scholar]
  4. A. Ben-Israel and A. Charnes, Contribution to the theory of generalized inverses. J. SIAM 11 (1963) 667–699. [Google Scholar]
  5. A. Bovier, Sharp upper bounds for perfect retrieval in the Hopfield model. J. Appl. Probab. 36 (1999) 941–950. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Bovier, Statistical mechanics of disordered system: A mathematical perspective. Cambridge Series in Statistical and Probabilistic Mathematics 18. Cambridge University Press (2006). [Google Scholar]
  7. A. Bovier and V. Gayrard, Hopfield models as a generalized mean field model, preprint. In Mathematics of spin glasses and neural networks, A. Bovier and P. Picco (Eds.). Progress in Probability, Birkhäuser (1998). [Google Scholar]
  8. R.M. Buehrer and B.D. Woerner, Analysis of adaptive multistage interference cancellation for CDMA using an improved Gaussian approximation. IEEE Trans. Commun. 44 (1996) 1308–1329. [CrossRef] [Google Scholar]
  9. R.M. Buehrer, A. Kaul, S. Striglis and B.D. Woerner, Analysis of DS-CDMA parallel interference cancellation with phase and timing errors. IEEE JSAC 14 (1996) 1522–1535. [Google Scholar]
  10. B. Crespi, Storage capacity of non-monotonic neurons. Neural Networks 12 (1999) 1377–1389. [CrossRef] [Google Scholar]
  11. P. de Jong, A Central Limit Theorem for Generalized Multilinear Forms. J. Multiv. Anal. 34 (1990) 275–289. [CrossRef] [Google Scholar]
  12. G. Dreyfus, I. Guyon and L. Personnaz, Information storage and retrieval in spin-glass like neural networks. J. Phys. Lett. 46 (1985) L359–L365. [CrossRef] [EDP Sciences] [Google Scholar]
  13. G. Dreyfus, I. Guyon and L. Personnaz, Collective computational properties of neural networks: New learning mechanisms. Phys. Rev. A 34 (1986) 4217–4228. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. P. Eichelsbacher and M. Löwe, A large deviation principle for m-variate von Mises-statistics and U-statistics. J. Theoret. Probab. 8 (1995) 807–824. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Eichelsbacher and M. Löwe, Moderate deviations for i.i.d. random variables. ESAIM: PS 7 (2003) 209–218. [CrossRef] [EDP Sciences] [Google Scholar]
  16. J.M. Holtzman, A simple, accurate method to calculate spread spectrum multiple-access error probabilities. IEEE Trans. Commun. 40 (1992) 461–464. [CrossRef] [Google Scholar]
  17. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79 (1982) 2554–2558. [NASA ADS] [CrossRef] [Google Scholar]
  18. M. Juntti, Multiuser demodulation for DS-CDMA systems in fading channels, Ph.D. thesis, University of Oulu, Finland, 1998. [Google Scholar]
  19. I. Kanter and H. Sampolinski, Associative recall of memory without errors. Phys. Rev. A 35 (1987) 380–392. [CrossRef] [PubMed] [Google Scholar]
  20. M.J. Klok, G. Hooghiemstra, T. Ojanperä and R. Prasad, A novel technique for DS-CDMA system performance evaluation. VTC'99 spring, Houston, USA (1999). [Google Scholar]
  21. K. Kobayashi, On the capacity of a neuron with a nonmonotone output function. Network 2 (1991) 237–243. [CrossRef] [MathSciNet] [Google Scholar]
  22. W. König and P. Mörters, Brownian intersection local times: Upper tail asymptotics and thick points. Ann. Probab. 30 (2002) 1605–1656. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Latva-aho, Advanced receivers for wideband CDMA systems, Ph.D. thesis, University of Oulu, Finland, 1999. [Google Scholar]
  24. J.S. Lehnert and M.B. Pursley, Error probabilities for binary direct sequence spread-spectrum communications with random signature sequences. IEEE Trans. Commun. COM-35 (1987) 87–98. [Google Scholar]
  25. J.S. Lehnert and R.K. Morrow, Bit-to-bit-error dependence in slotted DS/SSMA packet systems with random signature sequences. IEEE Trans. Commun. COM-37 (1989) 1052–1061. [Google Scholar]
  26. M. Löwe, On the storage capacity of Hopfield models with weakly correlated patterns. Ann. Appl. Probab. 8 (1999) 1216–1250. [Google Scholar]
  27. M. Löwe and F. Vermet, The storage capacity of the Hopfield model and moderate deviations. Statist. Probab. Lett. 75 (2005) 237–248. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Löwe and F. Vermet, The Capacity of q-state Potts neural networks with parallel retrieval dynamics. Statist. Probab. Lett. 77 (2007) 1505–1514. [CrossRef] [MathSciNet] [Google Scholar]
  29. Mathematical aspects of spin glasses and neural networks, in A. Bovier and P. Picco (Eds.). Progress in Probability, Birkhäuser, Boston (1998). [Google Scholar]
  30. R. McEliece, E. Posner, E. Rodemich and S. Venkatesh, The capacity of the Hopfield associative memory. IEEE Trans. Inform. Theory 33 (1987) 461–482. [CrossRef] [MathSciNet] [Google Scholar]
  31. S.K. Mitra and C.R. Rao, Generalized inverse of matrices and its applications. Wiley, New York (1971). [Google Scholar]
  32. M. Morita, Associative memory with nonmonotone dynamics. Neural Networks 6 (1993) 115–126. [CrossRef] [Google Scholar]
  33. M. Morita, S. Yoshizawa and K. Nakano, Analysis and improvement of the dynamics of autocorrelation associative memory. Trans. Inst. Electron. Inform. Commun. Eng. Jpn J73-D-II (1990) 232–242. [Google Scholar]
  34. N. Nishimori and I. Opris, Retrieval process of an associative memory with nonmonotonic input-output function. IEEE Int. Conf. Neural Networks 1 (1993) 353–358. [CrossRef] [Google Scholar]
  35. G. Palm, Memory capacities of local rules for synaptic modification. Concepts Neurosci. 2 (1991) 97–128. [Google Scholar]
  36. L.A. Pastur and A.L. Figotin, Exactly soluble model of a spin-glas. Sov. J. Low Temp. Phys. 3 (1977) 378–383. [Google Scholar]
  37. D. Petritis, Thermodynamic formalism of neural computing; Nonlinear Phenomena of Complex Systems, volume 2, pp. 86–146. Kluwer Acad. Publ., Dordrecht (1996). [Google Scholar]
  38. P. Picco, Artificial neural networks. A review from Physical and Mathematical point of view. Ann. Inst. H. Poincaré, Section A 64 (1996) 289–307. [Google Scholar]
  39. R. Prasad, CDMA for wireless personal communications. Artech House (1996). [Google Scholar]
  40. E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer (Ed.), Paris (2000). [Google Scholar]
  41. M.O. Sunay and P.J. Mclane, Calculating error probabilities for DS CDMA systems: When not to use the Gaussian approximation. IEEE Globecom 3 (1996) 1744–1749. [Google Scholar]
  42. R. van der Hofstad and M.J. Klok, Improving the performance of third-generation wireless communication systems. Adv. Appl. Probab. 36 (2004) 1046–1084. [CrossRef] [Google Scholar]
  43. R. van der Hofstad, G. Hooghiemstra and M.J. Klok, Large deviations for code division multiple access systems. SIAM J. Appl. Math. 62 (2002) 1044–1065. [CrossRef] [Google Scholar]
  44. R. van der Hofstad, M. Löwe and F. Vermet, The effect of system load on the existence of bit-errors in CDMA with and without parallel interference cancelation. IEEE Trans. Inform. Theory 52 (2006) 4733–4741. [CrossRef] [MathSciNet] [Google Scholar]
  45. F. Vermet, Étude asymptotique d'un réseau neuronal : le modèle de mémoire associative de Hopfield, Ph.D. thesis, University of Rennes 1, France, 1994. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.