Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 363 - 399
DOI https://doi.org/10.1051/ps:2008017
Published online 22 September 2009
  1. L.M. Artiles, R. Gill and M. Guţă, An invitation to quantum tomography. J. Royal Statist. Soc. B 67 (2005) 109–134. [CrossRef] [Google Scholar]
  2. K. Banaszek, G.M. D'Ariano, M.G.A. Paris and M.F. Sacchi, Maximum-likelihood estimation of the density matrix. Phys. Rev. A 61 (1999) R010304. [CrossRef] [Google Scholar]
  3. O.E. Barndorff-Nielsen, R. Gill and P.E. Jupp, On quantum statistical inference (with discussion). J. R. Statist. Soc. B 65 (2003) 775–816. [CrossRef] [Google Scholar]
  4. S.N. Bernstein, On a modification of Chebyshev's inequality and of the error formula of Laplace. In Collected works, Vol. 4 (1964). [Google Scholar]
  5. C. Butucea, M. Guţă and L. Artiles, Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data. Ann. Statist. 35 (2007) 465–494. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Cavalier and J.-Y. Koo, Poisson intensity estimation for tomographic data using a wavelet shrinkage approach. IEEE Trans. Inf. Theory 48 (2002) 2794–2802. [CrossRef] [Google Scholar]
  7. G.M. D'Ariano, C. Macchiavello and M.G.A. Paris, Detection of the density matrix through optical homodyne tomography without filtered back projection. Phys. Rev. A 50 (1994) 4298–4302. [CrossRef] [PubMed] [Google Scholar]
  8. G.M. D'Ariano, U. Leonhardt and H. Paul, Homodyne detection of the density matrix of the radiation field. Phys. Rev. A 52 (1995) R1801–R1804. [CrossRef] [PubMed] [Google Scholar]
  9. G.M. D'Ariano, L. Maccone, P. Lo Presti, Quantum calibration of measuring apparatuses. Phys. Rev. Lett. 93 (2004) 250407. [CrossRef] [PubMed] [Google Scholar]
  10. S.R. Deans, The Radon transform and some of its applications. John Wiley & Sons, New York (1983). [Google Scholar]
  11. A. Erdélyi, Higher Transcendental Functions, Vol. 2. McGraw-Hill (1953). [Google Scholar]
  12. R. Gill, Quantum Asymptotics, volume 36 of IMS Lect. Notes-Monograph Ser. (2001) 255–285. [Google Scholar]
  13. C.W. Helstrom, Quantum Detection and Estimation Theory. Academic Press, New York (1976). [Google Scholar]
  14. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58 (1964) 13–30. [CrossRef] [MathSciNet] [Google Scholar]
  15. A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory. North-Holland Publishing Company, Amsterdam (1982). [Google Scholar]
  16. J. Kahn, Sélection de modèles en tomographie quantique. Master's thesis, École Normale Supérieure, Université Paris-Sud, 2004. [Google Scholar]
  17. U. Leonhardt, Measuring the Quantum State of Light. Cambridge University Press (1997). [Google Scholar]
  18. U. Leonhardt, H. Paul and G.M. D'Ariano, Tomographic reconstruction of the density matrix via pattern functions. Phys. Rev. A 52 (1995) 4899–4907. [CrossRef] [PubMed] [Google Scholar]
  19. P. Massart, Concentration Inequalities and Model Selection. École d'été de Probabilité de Saint-Flour, 2003. Lect. Notes Math. Springer-Verlag, Berlin (2006). [Google Scholar]
  20. D.T. Smithey, M. Beck, M.G. Raymer and A. Faridani, Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett. 70 (1993) 1244–1247. [CrossRef] [PubMed] [Google Scholar]
  21. K. Vogel and H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40 (1989) 2847–2849. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.