Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 38 - 50
DOI https://doi.org/10.1051/ps:2007048
Published online 21 February 2009
  1. D. Blackwell and L. Koopmans, On the identifiability problem for functions of finite Markov chains. Ann. Math. Stat. 28 (1957) 1011–1015. [CrossRef] [Google Scholar]
  2. S. Boucheron and E. Gassiat, Order estimation and model selection, in Inference in hidden Markov models, Olivier Cappé, Eric Moulines, and Tobias Rydén (Eds.), Springer Series in Statistics. New York, NY: Springer (2005). [Google Scholar]
  3. R.J. Boys and D.A. Henderson, A Bayesian approach to DNA sequence segmentation. Biometrics 60 (2004) 573–588. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. O. Cappé, E. Moulines and T. Rydén (Eds.), Inference in hidden Markov models. Springer Series in Statistics (2005). [Google Scholar]
  5. I. Csiszár and Z. Talata, Context tree estimation for not necessarily finite memory processes, via BIC and MDL. IEEE Trans. Info. Theory 52 (2006) 1007–1016. [CrossRef] [Google Scholar]
  6. L.D. Davisson, R.J. McEliece, M.B. Pursley and M.S. Wallace, Efficient universal noiseless source codes. IEEE Trans. Inf. Theory 27 (1981) 269–279. [CrossRef] [Google Scholar]
  7. A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39 (1977) 1–38. With discussion. [Google Scholar]
  8. Y. Ephraim and N. Merhav, Hidden Markov processes. IEEE Trans. Inform. Theory, special issue in memory of Aaron D. Wyner 48 (2002) 1518–1569. [Google Scholar]
  9. L. Finesso, Consistent estimation of the order for Markov and hidden Markov chains. Ph.D. Thesis, University of Maryland, ISR, USA (1991). [Google Scholar]
  10. C-D. Fuh, Efficient likelihood estimation in state space models. Ann. Stat. 34 (2006) 2026–2068. [Google Scholar]
  11. E. Gassiat and S. Boucheron, Optimal error exponents in hidden Markov model order estimation. IEEE Trans. Info. Theory 48 (2003) 964–980. [CrossRef] [Google Scholar]
  12. E.J. Hannan, The estimation of the order of an ARMA process. Ann. Stat. 8 (1980) 1071–1081. [CrossRef] [Google Scholar]
  13. H. Ito, S.I. Amari and K. Kobayashi, Identifiability of hidden Markov information sources and their minimum degrees of freedom. IEEE Trans. Inf. Theory 38 (1992) 324–333. [CrossRef] [Google Scholar]
  14. J.C. Kieffer, Strongly consistent code-based identification and order estimation for constrained finite-state model classes. IEEE Trans. Inf. Theory 39 (1993) 893–902. [Google Scholar]
  15. B.G. Leroux, Maximum-likelihood estimation for hidden Markov models. Stochastic Process. Appl. 40 (1992) 127–143. [CrossRef] [MathSciNet] [Google Scholar]
  16. C.C. Liu and P. Narayan, Order estimation and sequential universal data compression of a hidden Markov source by the method of mixtures. IEEE Trans. Inf. Theory 40 (1994) 1167–1180. [CrossRef] [Google Scholar]
  17. R.J. MacKay, Estimating the order of a hidden markov model. Canadian J. Stat. 30 (2002) 573–589. [CrossRef] [Google Scholar]
  18. P. Nicolas, L. Bize, F. Muri, M. Hoebeke, F. Rodolphe, S.D. Ehrlich, B. Prum and P. Bessières, Mining bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res. 30 (2002) 1418–1426. [CrossRef] [PubMed] [Google Scholar]
  19. P. Nicolas, A.S. Tocquet and F. Muri-Majoube, SHOW User Manual. URL: http://www-mig.jouy.inra.fr/ssb/SHOW/show_doc.pdf (2004). Software available at URL: http://www-mig.jouy.inra.fr/ssb/SHOW/. [Google Scholar]
  20. B.M. Pötscher, Estimation of autoregressive moving-average order given an infinite number of models and approximation of spectral densities. J. Time Ser. Anal. 11 (1990) 165–179. [CrossRef] [MathSciNet] [Google Scholar]
  21. C.P. Robert, T. Rydén and D.M. Titterington, Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method. J. R. Stat. Soc., Ser. B, Stat. Methodol. 62 (2000) 57–75. [Google Scholar]
  22. T. Rydén, Estimating the order of hidden Markov models. Statistics 26 (1995) 345–354. [CrossRef] [MathSciNet] [Google Scholar]
  23. Y.M. Shtar'kov, Universal sequential coding of single messages. Probl. Inf. Trans. 23 (1988) 175–186. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.