Free Access
Issue
ESAIM: PS
Volume 6, 2002
Page(s) 33 - 88
DOI https://doi.org/10.1051/ps:2002003
Published online 15 November 2002
  1. N. Bary, A treatise on trigonometric series, Vol. 1. Pergamon Press (1984). [Google Scholar]
  2. P. Billingsley, Convergence of probability measures. J. Wiley and Sons (1968). [Google Scholar]
  3. S. Le Borgne, Dynamique symbolique et propriétés stochastiques des automorphismes du tore : cas hyperbolique et quasi-hyperbolique, Ph.D. Thesis. University of Rennes I, France (1997). [Google Scholar]
  4. S. Le Borgne, Un problème de régularité dans l'équation de cobord, in Sémimaires de probabilités de Rennes. Université de Rennes 1 (1998); http://www.maths.univ-rennes1.fr/csp/1998/index.html [Google Scholar]
  5. L.A. Bunimovich, N.I. Chernov and Y.G. Sinai, Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46 (1991) 47-106. [CrossRef] [MathSciNet] [Google Scholar]
  6. L.A. Bunimovich and Y.G. Sinai, Statistical properties of Lorentz gaz with periodic configuration of scatterers. Comm. Math. Phys. 78 (1981) 479-497. [CrossRef] [MathSciNet] [Google Scholar]
  7. N.I. Chernov and Y.G. Sinai, Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls. Russian Math. Surveys 42 (1987) 181-207. [Google Scholar]
  8. M.I. Gordin, The Central Limit theorem for stationary processes. Soviet Math. Dokl. 10 (1969) 1174-1176. [Google Scholar]
  9. Y. Katznelson, Ergodic automorphisms of Tn are Bernoulli shifts. Israel J. Math. 10 (1971) 186-195. [CrossRef] [MathSciNet] [Google Scholar]
  10. R.Z. Khas'minskii, On stochastic processes defined by differential equations with a small parameter (translation). Theory Probab. Appl. 11 (1966) 211-228. [CrossRef] [Google Scholar]
  11. Y. Kifer, Limit theorem in averaging for dynamical systems. Ergodic Theory Dynam. Systems 15 (1995) 1143-1172. [CrossRef] [MathSciNet] [Google Scholar]
  12. D.A. Lind, Dynamical properties of quasi hyperbolic toral automorphisms. Ergodic Theory Dynam. Systems 2 (1982) 49-68. [CrossRef] [Google Scholar]
  13. V.P. Leonov, Quelques applications de la méthode des cumulants à la théorie des processus stochastiques stationnaires (in Russian). Nauka, Moscow (1964). [Google Scholar]
  14. F. Pène, Applications des propriétés stochastiques des systèmes dynamiques de type hyperbolique : ergodicité du billard dispersif dans le plan, moyennisation d'équations différentielles perturbées par un flot ergodique, Ph.D. Thesis. University of Rennes I, France (2000). [Google Scholar]
  15. F. Pène, Rates of convergence in the CLT for two-dimensional dispersive billiards. Comm. Math. Phys. 225 (2002) 91-119. [CrossRef] [MathSciNet] [Google Scholar]
  16. D. Revuz and M. Yor, Continuous martingales and brownian motion. Springer-Verlag (1994). [Google Scholar]
  17. Y.G. Sinai, Dynamical systems with elastic reflections. Russian Math. Surveys 25 (1970) 137-189. [CrossRef] [MathSciNet] [Google Scholar]
  18. L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. 147 (1998) 585-650. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.