Free Access
Issue
ESAIM: PS
Volume 6, 2002
Page(s) 21 - 31
DOI https://doi.org/10.1051/ps:2002002
Published online 15 November 2002
  1. A. Balkema and L. de Haan, Residual life time at great age. Ann. Probab. 2 (1974) 792-801. [CrossRef] [Google Scholar]
  2. C.M. Goldie, N.H. Bingham and J.L. Teugels, Regular variation. Cambridge University Press (1987). [Google Scholar]
  3. J.P. Cohen, Convergence rates for the ultimate and penultimate approximations in extreme-value theory. Adv. Appl. Prob. 14 (1982) 833-854. [CrossRef] [Google Scholar]
  4. R.A. Fisher and L.H.C. Tippet, Limiting forms of the frequency of the largest or smallest member of a sample. Proc. Cambridge Phil. Soc. 24 (1928) 180-190. [NASA ADS] [CrossRef] [Google Scholar]
  5. M.I. Gomes, Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math. 36 (1984) 71-85. [CrossRef] [Google Scholar]
  6. I. Gomes and L. de Haan, Approximation by penultimate extreme value distributions. Extremes 2 (2000) 71-85. [CrossRef] [Google Scholar]
  7. M.I. Gomes and D.D. Pestana, Non standard domains of attraction and rates of convergence. John Wiley & Sons (1987) 467-477. [Google Scholar]
  8. J. Pickands III, Statistical inference using extreme order statistics. Ann. Stat. 3 (1975) 119-131. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.-P. Raoult and R. Worms, Rate of convergence for the Generalized Pareto approximation of the excesses (submitted). [Google Scholar]
  10. R. Worms, Vitesse de convergence de l'approximation de Pareto Généralisée de la loi des excès. Preprint Université de Marne-la-Vallée (10/2000). [Google Scholar]
  11. R. Worms, Vitesses de convergence pour l'approximation des queues de distributions Ph.D. Thesis Université de Marne-la-Vallée (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.