Free Access
Issue
ESAIM: PS
Volume 6, 2002
Page(s) 89 - 104
DOI https://doi.org/10.1051/ps:2002004
Published online 15 November 2002
  1. A.R. Barron, The strong ergodic theorem for densities: Generalized Shannon-McMillan-Breiman theorem. Ann. Probab. 13 (1985) 1292-1303. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Bigelis, E.N.M. Cirillo, J.L. Lebowitz and E.R. Speer, Critical droplets in metastable states of probabilistic cellular automata. Phys. Rev. E 59 (1999) 3935-3941. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Brémaud, Markov chains. Gibbs fields, Monte-Carlo simulation, and queues. Springer-Verlag, New York, Texts in Appl. Math. 31 (1999). [Google Scholar]
  4. P. Dai Pra, Ph.D. Thesis. Rutgers University (1992). [Google Scholar]
  5. D.A. Dawson, Synchronous and asynchronous reversible Markov systems. Canad. Math. Bull. 17 (1974/75) 633-649. [Google Scholar]
  6. H.-O. Georgii, Gibbs measures and phase transitions. Walter de Gruyter & Co., Berlin, de Gruyter Stud. in Math. 9 (1988). [Google Scholar]
  7. S. Goldstein, R. Kuik, J.L. Lebowitz and C. Maes, From PCAs to equilibrium systems and back. Comm. Math. Phys. 125 (1989) 71-79. [CrossRef] [MathSciNet] [Google Scholar]
  8. X. Guyon, Champs aléatoires sur un réseau. Modélisations, statistique et applications, Techniques stochastiques. Masson, Paris (1992). [Google Scholar]
  9. K. Handa, Entropy production per site in (nonreversible) spin-flip processes. J. Statist. Phys. 83 (1996) 555-571. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Holley, Free energy in a Markovian model of a lattice spin system. Comm. Math. Phys. 23 (1971) 87-99. [CrossRef] [MathSciNet] [Google Scholar]
  11. O. Kozlov and N. Vasilyev, Reversible Markov chains with local interaction, Multicomponent random systems. Dekker, New York, Adv. Probab. Related Topics 6 (1980) 451-469. [Google Scholar]
  12. H. Künsch, Nonreversible stationary measures for infinite interacting particle systems. Z. Wahrsch. Verw. Gebiete 66 (1984) 407-424. [CrossRef] [MathSciNet] [Google Scholar]
  13. H. Künsch, Time reversal and stationary Gibbs measures. Stochastic Process. Appl. 17 (1984) 159-166. [CrossRef] [MathSciNet] [Google Scholar]
  14. J.L. Lebowitz, C. Maes and E.R. Speer, Statistical mechanics of probabilistic cellular automata. J. Statist. Phys. 59 (1990) 117-170. [Google Scholar]
  15. T.M. Liggett, Interacting particle systems, Vol. 276. Springer-Verlag, New York-Berlin (1985). [Google Scholar]
  16. F.J. Lopez and G. Sanz, Stochastic comparisons for general probabilistic cellular automata. Stat. Probab. Lett. 46 (2000) 401-410. [CrossRef] [Google Scholar]
  17. C. Maes and S.B. Shlosman, Ergodicity of probabilistic cellular automata: A constructive criterion. Comm. Math. Phys. 135 (1991) 233-251. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Maes and S.B. Shlosman, When is an interacting particle system ergodic? Comm. Math. Phys. 151 (1993) 447-466. [Google Scholar]
  19. C. Maes and K. Vande Velde, The (non-) Gibbsian nature of states invariant under stochastic transformations. Physica A 206 (1994) 587-603. [CrossRef] [Google Scholar]
  20. V.A. Malyshev and R.A. Minlos, Gibbs random fields, Cluster expansions. Kluwer Academic Publishers, Dordrecht, Math. Appl. 44 (1991). [Google Scholar]
  21. F. Martinelli, Lectures on Glauber dynamics for discrete spin models, in Lectures on probability theory and statistics, Saint-Flour (1997) 93-191. Springer, Berlin, Lecture Notes in Math. 1717 (1999). [Google Scholar]
  22. C. Preston, Random fields. Springer-Verlag, Berlin-New York, Lecture Notes in Math. 534 (1976). [Google Scholar]
  23. A.L. Toom, N.B. Vasilyev, O.N. Stavskaya, L.G. Mityushin, G.L. Kurdyumov and S.A. Pirogov, Discrete local Markov systems, in Stochastic Cellular Systems: Ergodicity, memory, morphogenesis, edited by R.L. Dobrushin, V.I. Kryukov and A.L. Toom. Manchester University Press, Manchester (1990) 1-182. [Google Scholar]
  24. N.B. Vasilyev, Bernoulli and Markov stationary measures in discrete local interactions, Locally interacting systems and their applications in biology. Pushchino (1976), edited by R.L. Dobrushin, V.I. Kryukov and A.L. Toom. Springer, Berlin, Lecture Notes in Math. 653 (1978). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.