Free Access
Volume 6, 2002
Page(s) 89 - 104
Published online 15 November 2002
  1. A.R. Barron, The strong ergodic theorem for densities: Generalized Shannon-McMillan-Breiman theorem. Ann. Probab. 13 (1985) 1292-1303. [CrossRef] [MathSciNet]
  2. S. Bigelis, E.N.M. Cirillo, J.L. Lebowitz and E.R. Speer, Critical droplets in metastable states of probabilistic cellular automata. Phys. Rev. E 59 (1999) 3935-3941. [CrossRef] [MathSciNet]
  3. P. Brémaud, Markov chains. Gibbs fields, Monte-Carlo simulation, and queues. Springer-Verlag, New York, Texts in Appl. Math. 31 (1999).
  4. P. Dai Pra, Ph.D. Thesis. Rutgers University (1992).
  5. D.A. Dawson, Synchronous and asynchronous reversible Markov systems. Canad. Math. Bull. 17 (1974/75) 633-649.
  6. H.-O. Georgii, Gibbs measures and phase transitions. Walter de Gruyter & Co., Berlin, de Gruyter Stud. in Math. 9 (1988).
  7. S. Goldstein, R. Kuik, J.L. Lebowitz and C. Maes, From PCAs to equilibrium systems and back. Comm. Math. Phys. 125 (1989) 71-79. [CrossRef] [MathSciNet]
  8. X. Guyon, Champs aléatoires sur un réseau. Modélisations, statistique et applications, Techniques stochastiques. Masson, Paris (1992).
  9. K. Handa, Entropy production per site in (nonreversible) spin-flip processes. J. Statist. Phys. 83 (1996) 555-571. [CrossRef] [MathSciNet]
  10. R. Holley, Free energy in a Markovian model of a lattice spin system. Comm. Math. Phys. 23 (1971) 87-99. [CrossRef] [MathSciNet]
  11. O. Kozlov and N. Vasilyev, Reversible Markov chains with local interaction, Multicomponent random systems. Dekker, New York, Adv. Probab. Related Topics 6 (1980) 451-469.
  12. H. Künsch, Nonreversible stationary measures for infinite interacting particle systems. Z. Wahrsch. Verw. Gebiete 66 (1984) 407-424. [CrossRef] [MathSciNet]
  13. H. Künsch, Time reversal and stationary Gibbs measures. Stochastic Process. Appl. 17 (1984) 159-166. [CrossRef] [MathSciNet]
  14. J.L. Lebowitz, C. Maes and E.R. Speer, Statistical mechanics of probabilistic cellular automata. J. Statist. Phys. 59 (1990) 117-170. [CrossRef] [MathSciNet]
  15. T.M. Liggett, Interacting particle systems, Vol. 276. Springer-Verlag, New York-Berlin (1985).
  16. F.J. Lopez and G. Sanz, Stochastic comparisons for general probabilistic cellular automata. Stat. Probab. Lett. 46 (2000) 401-410. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  17. C. Maes and S.B. Shlosman, Ergodicity of probabilistic cellular automata: A constructive criterion. Comm. Math. Phys. 135 (1991) 233-251. [CrossRef] [MathSciNet]
  18. C. Maes and S.B. Shlosman, When is an interacting particle system ergodic? Comm. Math. Phys. 151 (1993) 447-466.
  19. C. Maes and K. Vande Velde, The (non-) Gibbsian nature of states invariant under stochastic transformations. Physica A 206 (1994) 587-603. [CrossRef]
  20. V.A. Malyshev and R.A. Minlos, Gibbs random fields, Cluster expansions. Kluwer Academic Publishers, Dordrecht, Math. Appl. 44 (1991).
  21. F. Martinelli, Lectures on Glauber dynamics for discrete spin models, in Lectures on probability theory and statistics, Saint-Flour (1997) 93-191. Springer, Berlin, Lecture Notes in Math. 1717 (1999).
  22. C. Preston, Random fields. Springer-Verlag, Berlin-New York, Lecture Notes in Math. 534 (1976).
  23. A.L. Toom, N.B. Vasilyev, O.N. Stavskaya, L.G. Mityushin, G.L. Kurdyumov and S.A. Pirogov, Discrete local Markov systems, in Stochastic Cellular Systems: Ergodicity, memory, morphogenesis, edited by R.L. Dobrushin, V.I. Kryukov and A.L. Toom. Manchester University Press, Manchester (1990) 1-182.
  24. N.B. Vasilyev, Bernoulli and Markov stationary measures in discrete local interactions, Locally interacting systems and their applications in biology. Pushchino (1976), edited by R.L. Dobrushin, V.I. Kryukov and A.L. Toom. Springer, Berlin, Lecture Notes in Math. 653 (1978).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.