Free Access
Volume 6, 2002
Page(s) 105 - 112
Published online 15 November 2002
  1. A.J. Bosch, The Pólya distribution. Statist. Neerlandica 17 (1963) 201-213. [CrossRef] [Google Scholar]
  2. F. Eggenberger and G. Pólya, Über die Statistik Verketteter Vorgänge. Z. Angew. Math. Mech. 3 (1923) 279-289. [CrossRef] [Google Scholar]
  3. F. Eggenberger and G. Pólya, Calcul des probabilités - sur l'interprétation de certaines courbes de fréquence. C. R. Acad. Sci. Paris 187 (1928) 870-872. [Google Scholar]
  4. W. Feller, On a general class of ``contagious" distributions. Ann. Math. Statist. 14 (1943) 389-400. [CrossRef] [Google Scholar]
  5. B. Friedman, A simple urn model. Comm. Pure Appl. Math. 2 (1949) 59-70. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Hald, The compound hypergeometric distribution and a system of single sampling inspection plans based on prior distributions and costs. Technometrics 2 (1960) 275-340. [CrossRef] [MathSciNet] [Google Scholar]
  7. K.G. Janardan, On Characterizing the Markov-Pólya distribution. Sankhya Ser. A 46 (1984) 444-453. [MathSciNet] [Google Scholar]
  8. K.G. Janardan and D.J. Schaeffer, A generalization of Markov-Pólya distribution its extensions and applications. Biometrical J. 19 (1977) 87-106. [CrossRef] [MathSciNet] [Google Scholar]
  9. N.L. Johnson and S. Kotz, Urn Models and Their Application. Wiley, New York (1977). [Google Scholar]
  10. C. Jordan, Sur un cas généralisé de la probabilité des épreuves répétées. C. R. Acad. Sci. Paris 184 (1927) 315-317. [Google Scholar]
  11. J. Ollero and H.M. Ramos, Description of a Subfamily of the Discrete Pearson System as Generalized-Binomial Distributions. J. Italian Statist. Soc. 2 (1995) 235-249. [CrossRef] [Google Scholar]
  12. J.K. Ord, On a System of Discrete Distributions. Biometrika 54 (1967) 649-656. [MathSciNet] [PubMed] [Google Scholar]
  13. J.K. Ord, Families of Frequency Distributions. Griffin, London (1972). [Google Scholar]
  14. J. Panaretos and E. Xekalaki, On some distributions arising from certain generalized sampling schemes. Commun. Statist. Theory Meth. 15 (1986) 873-891. [CrossRef] [Google Scholar]
  15. J. Panaretos and E. Xekalaki, A probability distribution associated with events with multiple occurrences. Statist. Probab. Lett. 8 (1989) 389-396. [CrossRef] [MathSciNet] [Google Scholar]
  16. G.P. Patil and S.W. Joshi, A Dictionary and Bibliography of Discrete Distributions. Oliver & Boyd, Edinburgh (1968). [Google Scholar]
  17. A.N. Philippou, G.A. Tripsiannis and D.L. Antzoulakos, New Pólya and inverse Pólya distributions of order k. Commun. Statist. Theory Meth. 18 (1989) 2125-2137. [CrossRef] [Google Scholar]
  18. G. Pólya, Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré 1 (1930) 117-161. [MathSciNet] [Google Scholar]
  19. M. Skibinsky, A characterization of hypergeometric distributions. J. Amer. Statist. Assoc. 65 (1970) 926-929. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.