Free Access
Issue |
ESAIM: PS
Volume 6, 2002
|
|
---|---|---|
Page(s) | 113 - 125 | |
DOI | https://doi.org/10.1051/ps:2002006 | |
Published online | 15 November 2002 |
- N.T.J. Bailey, On queueing processes with bulk service. J. Roy. Statist. Soc. Ser. B 16 (1954) 80-87. [MathSciNet] [Google Scholar]
- U.N. Bhat, Imbedded Markov Chain analysis of single server bulk queues. J. Austral. Math. Soc. 4 (1964) 244-263. [CrossRef] [MathSciNet] [Google Scholar]
- A. Borthakur, A Poisson queue with a general bulk service rule. J. Assam Sci. Soc. XIV (1971) 162-167. [Google Scholar]
- M.L Chaudhry and J.G.C. Templeton, A First Course in Bulk Queues. Wiley Inter Science, UK (1983). [Google Scholar]
- B.D. Choi and K.K. Park, The M/G/1 queue with Bernoulli schedule. Queueing Systems 7 (1990) 219-228. [Google Scholar]
- J.W. Cohen, The Single Server Queue. North-Holland (1969). [Google Scholar]
- B.W. Conolly, Queueing at a single point with arrivals. J. Roy. Statist. Soc. Ser. B 22 (1960) 285-298. [MathSciNet] [Google Scholar]
- M. Cramer, Stationary distributions in queueing system with vacation times and limited service. Queueing Systems 4 (1989) 57-78. [CrossRef] [MathSciNet] [Google Scholar]
- B.T. Doshi, A note on stochastic decomposition in a GI/G/1 queue with vacations or set-up times. J. Appl. Probab. 22 (1985) 419-428. [Google Scholar]
- B.T. Doshi, Queueing systems with vacations-a survey. Queueing Systems 1 (1986) 29-66. [Google Scholar]
- S.W. Fuhrman, A note on the M/G/1 queue with server vacations. Oper. Res. 32 (1984). [Google Scholar]
- D. Gross and C.M. Harris, The Fundamentals of Queueing Theory, Second Edition. John Wiley & Sons, New York (1985). [Google Scholar]
- C.M. Harris, Some results of bulk arrival queues with state dependent service times. Management Sci. 16 (1970) 313-326. [CrossRef] [Google Scholar]
- A. Huang and D. McDonald, Connection admission control for constant bit rate traffic at a multi-buffer multiplexer using the oldest-cell-first discipline. Queueing Systems 29 (1998) 1-16. [CrossRef] [MathSciNet] [Google Scholar]
- N.K. Jaiswal, Time-dependent solution of the bulk service queueing problem. Oper. Res. 8 (1960) 773-781. [CrossRef] [Google Scholar]
- B.R.K. Kashyap and M.L. Chaudhry, An Introduction to Queueing Theory. A&A Publications, Ontario, Canada (1988). [Google Scholar]
- J. Keilson and L.D. Servi, Oscillating random walk models for G1/G/1 vacation systems with Bernoulli schedules. J. Appl. Probab. 23 (1986) 790-802. [Google Scholar]
- L. Kleinrock, Queueing Systems, Vol. 1. Wiley, New York (1975). [Google Scholar]
- T.T. Lee, M/G/1/N queue with vacation and exhaustive service discipline. Oper. Res. 32 (1984). [Google Scholar]
- Y. Levy and U. Yechiali, Utilization of idle time in an M/G/1 queueing system. Management Sci. 22 (1975) 202-211. [Google Scholar]
- K.C. Madan, An M/G/1 Queue with optional deterministic server vacations. Metron LVII (1999) 83-95. [Google Scholar]
- K.C. Madan, An M/G/1 queue with second optional service. Queueing Systems 34 (2000) 37-46. [Google Scholar]
- K.C. Madan, On a single server queue with two-stage heteregeneous service and deterministic server vacations. Int. J. Systems Sci. 32 (2001) 837-844. [CrossRef] [Google Scholar]
- J. Medhi and A. Borthakur, On a two server bulk Markovian queue with a general bulk service rule. Cahiers Centre Études Rech. Opér. 14 (1972) 151-158. [Google Scholar]
- J. Medhi, Waiting time distribution in a Poisson queue with a general bulk service rule. Management Sci. 21 (1975) 777-782. [CrossRef] [Google Scholar]
- J. Medhi, Further results in a Poison queue under a general bulk service rule. Cahiers Centre Études Rech. Opér. 21 (1979) 183-189. [Google Scholar]
- J. Medhi, Recent Developments in Bulk Queueing Models. Wiley Eastern, New Delhi (1984). [Google Scholar]
- R. Nadarajan and G. Sankranarayanan, A bulk service queueing system with Erlang input. J. Indian Statist. Assoc. 18 (1980) 109-116. [MathSciNet] [Google Scholar]
- M.F. Neuts, A general class of bulk queues with Poisson input. Ann. Math. Statist. 38 (1967) 759-770. [CrossRef] [MathSciNet] [Google Scholar]
- M.F. Neuts, An algorithmic solution to the GI/M/C queue with group arrivals. Cahiers Centre Études Rech. Opér. 21 (1979) 109-119. [Google Scholar]
- M.F. Neuts, The M/G/1 queue with limited number of admissions or a limited admission period during each service time, Technical Report No. 978, University of Delaware (1984). [Google Scholar]
- R.C. Rue and M. Rosenshine, Some properties of optimal control policies for enteries to an M/M/1 queue. Naval Res. Logist. Quart. 28 (1981) 525-532. [CrossRef] [Google Scholar]
- S. Stidham Jr., Optimal control of arrivals to queues and networks of queues, Paper presented at the 21st IEEE conference on Decision and Control (1982). [Google Scholar]
- M. Scholl and L. Kleinrock, On the M/G/1 queue with rest periods and certain service independent queueing disciplines. Oper. Res. 31 (1983) 705-719. [CrossRef] [Google Scholar]
- L.D. Servi, D/G/1 queue with vacation. Oper. Res. (1986). [Google Scholar]
- L.D. Servi, Average delay approximation of M/G/1 cyclic service queue with Bernoulli schedules. IEEE J. Sel. Areas Comm. (1986) [Google Scholar]
- J.G. Shanthikumar, On stochastic decomposition in the M/G/1 type queues with generalized vacations. Oper. Res. 36 (1988) 566-569. [CrossRef] [MathSciNet] [Google Scholar]
- J.G. Shanthikumar and U. Sumita, Modified Lindley process with replacement: Dynamic behavior, asymptotic decomposition and applications. J. Appl. Probab. 26 (1989) 552-565. [CrossRef] [MathSciNet] [Google Scholar]
- H. Takagi, Queueing Analysis, Vol. 1: Vacation and Priority Systems. North- Holland, Amsterdam (1991). [Google Scholar]
- M.H. Van Hoorn, Algorithms for the state probabilities in a general class of single server queueing systems with group arrivals. Management Sci. 27 (1981) 1178-1187. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.