Free Access
Issue
ESAIM: PS
Volume 6, 2002
Page(s) 127 - 146
DOI https://doi.org/10.1051/ps:2002007
Published online 15 November 2002
  1. Y. Baraud, Model selection for regression on a fixed design. Probab. Theory Related Fields 117 (2000) 467-493. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. [CrossRef] [MathSciNet] [Google Scholar]
  3. A.R. Barron and T.M. Cover, Minimum complexity density estimation. IEEE Trans. Inform. Theory 37 (1991) 1738. [MathSciNet] [Google Scholar]
  4. L. Birgé and P. Massart, An adaptive compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. [CrossRef] [MathSciNet] [Google Scholar]
  5. L. Birgé and P. Massart, Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4 (1998) 329-375. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Birgé and P. Massart, Gaussian model selection. JEMS 3 (2001) 203-268. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Birgé and Massart, A generalized Cp criterion for Gaussian model selection, Technical Report. University Paris 6, PMA-647 (2001). [Google Scholar]
  8. L. Birgé and Y. Rozenholc, How many bins should be put in a regular histogram, Technical Report. University Paris 6, PMA-721 (2002). [Google Scholar]
  9. O. Catoni, Statistical learning theory and stochastic optimization, in École d'été de probabilités de Saint-Flour. Springer (2001). [Google Scholar]
  10. A. Cohen, I. Daubechies and P. Vial, Wavelet and fast wavelet transform on an interval. Appl. Comp. Harmon. Anal. 1 (1993) 54-81. [CrossRef] [MathSciNet] [Google Scholar]
  11. I. Daubechies, Ten lectures on wavelets. SIAM: Philadelphia (1992). [Google Scholar]
  12. R.A. DeVore and G.G. Lorentz, Constructive approximation. Springer-Verlag, Berlin (1993). [Google Scholar]
  13. D.L. Donoho and I.M. Johnstone, Ideal spatial adaptation via wavelet shrinkage. Biometrika 81 (1994) 425-455. [CrossRef] [MathSciNet] [Google Scholar]
  14. D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Statist. 26 (1998) 879-921. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. M. Kohler, Inequalities for uniform deviations of averages from expectations with applications to nonparametric regression. J. Statist. Plann. Inference 89 (2000) 1-23. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Kohler, Nonparametric regression function estimation using interaction least square splines and complexity regularization. Metrika 47 (1998) 147-163. [CrossRef] [MathSciNet] [Google Scholar]
  17. A.P. Korostelev and A.B. Tsybakov, Minimax theory of image reconstruction. Springer-Verlag, New York NY, Lecture Notes in Statis. (1993). [Google Scholar]
  18. C.J. Stone, Additive regression and other nonparametric models. Ann. Statist. 13 (1985) 689-705. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Wegkamp, Model selection in non-parametric regression, Preprint. Yale University (2000). [Google Scholar]
  20. Y. Yang, Model selection for nonparametric regression. Statist. Sinica 9 (1999) 475-499. [MathSciNet] [Google Scholar]
  21. Y. Yang, Combining different procedures for adaptive regression. J. Multivariate Anal. 74 (2000) 135-161. [CrossRef] [MathSciNet] [Google Scholar]
  22. Y. Yang and A. Barron, Information-Theoretic determination of minimax rates of convergence. Ann. Statist. 27 (1999) 1564-1599. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.