Free Access
Issue
ESAIM: PS
Volume 6, 2002
Page(s) 127 - 146
DOI https://doi.org/10.1051/ps:2002007
Published online 15 November 2002
  1. Y. Baraud, Model selection for regression on a fixed design. Probab. Theory Related Fields 117 (2000) 467-493. [CrossRef] [MathSciNet]
  2. A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. [CrossRef] [MathSciNet]
  3. A.R. Barron and T.M. Cover, Minimum complexity density estimation. IEEE Trans. Inform. Theory 37 (1991) 1738. [MathSciNet]
  4. L. Birgé and P. Massart, An adaptive compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. [CrossRef] [MathSciNet]
  5. L. Birgé and P. Massart, Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4 (1998) 329-375. [CrossRef] [MathSciNet]
  6. L. Birgé and P. Massart, Gaussian model selection. JEMS 3 (2001) 203-268. [CrossRef] [MathSciNet]
  7. L. Birgé and Massart, A generalized Cp criterion for Gaussian model selection, Technical Report. University Paris 6, PMA-647 (2001).
  8. L. Birgé and Y. Rozenholc, How many bins should be put in a regular histogram, Technical Report. University Paris 6, PMA-721 (2002).
  9. O. Catoni, Statistical learning theory and stochastic optimization, in École d'été de probabilités de Saint-Flour. Springer (2001).
  10. A. Cohen, I. Daubechies and P. Vial, Wavelet and fast wavelet transform on an interval. Appl. Comp. Harmon. Anal. 1 (1993) 54-81. [CrossRef] [MathSciNet]
  11. I. Daubechies, Ten lectures on wavelets. SIAM: Philadelphia (1992).
  12. R.A. DeVore and G.G. Lorentz, Constructive approximation. Springer-Verlag, Berlin (1993).
  13. D.L. Donoho and I.M. Johnstone, Ideal spatial adaptation via wavelet shrinkage. Biometrika 81 (1994) 425-455. [CrossRef] [MathSciNet]
  14. D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Statist. 26 (1998) 879-921. [CrossRef] [MathSciNet] [PubMed]
  15. M. Kohler, Inequalities for uniform deviations of averages from expectations with applications to nonparametric regression. J. Statist. Plann. Inference 89 (2000) 1-23. [CrossRef] [MathSciNet]
  16. M. Kohler, Nonparametric regression function estimation using interaction least square splines and complexity regularization. Metrika 47 (1998) 147-163. [CrossRef] [MathSciNet]
  17. A.P. Korostelev and A.B. Tsybakov, Minimax theory of image reconstruction. Springer-Verlag, New York NY, Lecture Notes in Statis. (1993).
  18. C.J. Stone, Additive regression and other nonparametric models. Ann. Statist. 13 (1985) 689-705. [CrossRef] [MathSciNet]
  19. M. Wegkamp, Model selection in non-parametric regression, Preprint. Yale University (2000).
  20. Y. Yang, Model selection for nonparametric regression. Statist. Sinica 9 (1999) 475-499. [MathSciNet]
  21. Y. Yang, Combining different procedures for adaptive regression. J. Multivariate Anal. 74 (2000) 135-161. [CrossRef] [MathSciNet]
  22. Y. Yang and A. Barron, Information-Theoretic determination of minimax rates of convergence. Ann. Statist. 27 (1999) 1564-1599. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.