Open Access
Issue |
ESAIM: PS
Volume 29, 2025
|
|
---|---|---|
Page(s) | 158 - 183 | |
DOI | https://doi.org/10.1051/ps/2025003 | |
Published online | 02 April 2025 |
- A. Løkka, Martingale representation of functionals of Lévy processes. Stochast. Anal. Appl. 22 (2004) 867–892. [Google Scholar]
- D. Nualart and W. Schoutens, Chaotic and predictable representations for Lévy processes. Stochast. Processes Appl. 90 (2000) 109–122. [Google Scholar]
- J. Picard, Formules de dualité sur l’espace de Poisson. Ann. Inst. H. Poincaré Probab. Statist. 32 (1996) 509–548. [Google Scholar]
- X. Zhang, Clark–Ocone formula and variational representation for Poisson functionals. Ann. Probab. 37 (2009) 506–529. [Google Scholar]
- G. Last and M.D. Penrose, Martingale representation for Poisson processes with applications to minimal variance hedging. Stochast. Processes Appl. 121 (2011) 1588–1606. [Google Scholar]
- I. Flint and G.L. Torrisi, A Clark–Ocone formula for temporal point processes and applications. Ann. Probab. 45 (2017) 3266–3292. [Google Scholar]
- G. Di Nunno and J. Vives, A Malliavin–Skorohod calculus in L0 and L1 for additive and Volterra-type processes. Stochastics 89 (2017) 142–170. [Google Scholar]
- J. Jacod, Calc. Stochastique Problèmes de Martingales. Springer Berlin Heidelberg (1979). [Google Scholar]
- P. Brémaud and L. Massoulié, Stability of nonlinear Hawkes processes. Ann. Probab. 24 (1996) 1563–1588. [Google Scholar]
- C. Hillairet and A. Réveillac, On the chaotic expansion for counting processes. Electron. J. Probab. 29 (2024) 1–33. [Google Scholar]
- G. Last, Stochastic Analysis for Poisson Point Processes, in Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener–Itô Chaos Expansions and Stochastic Geometry, edited by G. Peccati and M. Reitzner). Springer International Publishing (2016) 1–36. [Google Scholar]
- G. Last and M.D. Penrose, Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Related Fields 150 (2011) 663–690. [MathSciNet] [Google Scholar]
- J. Jacod, Multivariate point processes: predictable projection, Radon–Nikodym derivatives, representation of martingales. J. Z. Wahrschein. Gebiete 31 (1975) 235–253. [CrossRef] [Google Scholar]
- P. Protter, Stochastic Integration and Differential Equations. Springer Verlag, New York (1990). [Google Scholar]
- D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semigroups. Probab. Math. Statist. 3 (1984) 217–239. [MathSciNet] [Google Scholar]
- N. Privault, Stochastic Analysis in Discrete and Continuous Settings. Springer Berlin Heidelberg (2009). [Google Scholar]
- L. Wu, A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Related Fields 118 (2000) 427–438. [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.