Open Access
Issue
ESAIM: PS
Volume 29, 2025
Page(s) 113 - 157
DOI https://doi.org/10.1051/ps/2025001
Published online 02 April 2025
  1. S. Wright, Isolation by distance. Genetics 28 (1943) 114. [Google Scholar]
  2. G. Malécot, Les Mathématiques de l’Hérédité. Masson et Cie., Paris (1948). [Google Scholar]
  3. J.T. Cox and R. Durrett, The stepping stone model: new formulas expose old myths. Ann. Appl. Probab. 12 (2002) 1348–1377. [Google Scholar]
  4. N.H. Barton, F. Depaulis and A.M. Etheridge, Neutral evolution in spatially continuous populations. Theoret. Popul. Biol. 61 (2002) 31–48. [Google Scholar]
  5. N.H. Barton, J. Kelleher and A.M. Etheridge, A new model for extinction and recolonization in two dimensions: Quantifying phylogeography. Evolution 64 (2010) 2701–2715. [Google Scholar]
  6. Z. Fric and M. Konvicka, Dispersal kernels of butterflies: power-law functions are invariant to marking frequency. Basic Appl Ecol. 8 (2007) 377–386. [Google Scholar]
  7. R. Kelly, M.G. Lundy, F. Mineur, C. Harrod, C.A. Maggs, N.E. Humphries, D.W. Sims and N. Reid, Historical data reveal power-law dispersal patterns of invasive aquatic species. Ecography 37 (2014) 581–590. [Google Scholar]
  8. M.L. Cain, B.G. Milligan and A.E. Strand, Long-distance seed dispersal in plant populations. Am. J. Bot. 87 (2000) 1217–1227. [Google Scholar]
  9. V. Vallaeys, R. Tyson, W. Lane, E. Deleersnijder and E. Hanert, A Lévy-Flight diffusion model to predict transgenic pollen dispersal. J. Roy. Soc. Interface 14 (2017) 20160942. [Google Scholar]
  10. J. Treep, M. de Jager, F. Bartumeus and M. Soons, Seed dispersal as a search strategy: Dynamic and fragmented landscapes select for multi-scale movement strategies in plants. Movement Ecol. 9 (2021) 4. [Google Scholar]
  11. N. Barton, A.M. Etheridge and A. Véber, A new model for evolution in a spatial continuum. Electron. J. Probab. 15 (2010) 162–216. [MathSciNet] [Google Scholar]
  12. R. Forien, Stochastic partial differential equations describing neutral genetic diversity under short range and long range dispersal. Electron. J. Probab. 27 (2022) 1–41. [CrossRef] [Google Scholar]
  13. T.B. Smith and D.B. Weissman, Isolation by distance in populations with power-law dispersal. G3 Genes—Genomes—Genetics 13 (2023). [Google Scholar]
  14. R. Forien and B. Wiederhold, Central limit theorems describing isolation by distance under varying population size (2024). [Google Scholar]
  15. A.M. Etheridge, Drift, draft and structure: some mathematical moodels of evolution. Banach Center Publ. 80 (2008) 121–144. [CrossRef] [Google Scholar]
  16. A. Véber and A. Wakolbinger, The spatial Lambda-Fleming–Viot process: an event-based construction and a lookdown representation. Ann. Inst. Henri Poincaré, Probab. Statist. 51 (2015) 570–598. [Google Scholar]
  17. N. Berestycki, A.M. Etheridge and M. Hutzenthaler, Survival, extinction and ergodicity in a spatially continuous population model. Markov Processes Related Fields 15 (2009) 265–288. [Google Scholar]
  18. R. Forien and S. Penington, A central limit theorem for the spatial Lambda–Fleming–Viot process with selection. Electron. J. Probab. 22 (2017) 1–68. [Google Scholar]
  19. A.M. Etheridge, A. Véber and F. Yu, Rescaling limits of the spatial Lambda–Fleming–Viot process with selection. Electron. J. Probab. 25 (2020) 1–89. [CrossRef] [Google Scholar]
  20. M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20 (2017) 7–51. [MathSciNet] [Google Scholar]
  21. J.B. Walsh, An introduction to stochastic partial differential equations, in Ecole d’été de Probabilités de Saint-Flour, XIV—1984, Vol. 1180 of Lecture Notes in Mathematics. Springer, Berlin (1986) 265–439. [Google Scholar]
  22. A.M. Etheridge, An Introduction to Superprocesses, Vol. 20. American Mathematical Society Providence, RI (2000). [Google Scholar]
  23. S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence. John Wiley & Sons, Inc., New York (1986). [Google Scholar]
  24. N. Cho, Weak convergence of stochastic integrals driven by martingale measure. Stochast. Processes Appl. 59 (1995) 55–79. [Google Scholar]
  25. J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.