Open Access
Volume 27, 2023
Page(s) 156 - 173
Published online 20 January 2023
  1. R.T. Baillie, C.-F. Chung and M.A. Tieslau, Analysing inflation by the fractionally integrated ARFIMA-GARCH model. J. Appl. Econometr. 11 (1996) 23–40. [CrossRef] [Google Scholar]
  2. J. Beran, Maximum likelihood estimation of the differencing parameter for invertible short and long memory autoregressive integrated moving average models. J. Roy. Statist. Soc. Ser. B 57 (1995) 659–672. [MathSciNet] [Google Scholar]
  3. J. Beran, Y. Feng, S. Ghosh and R. Kulik, Long-memory processes. Springer, Heidelberg (2013). [Google Scholar]
  4. Y. Boubacar Mainassara, Y. Esstafa and B. Saussereau, Diagnostic checking in FARIMA models with uncorrelated but non-independent error terms (2021). DOI: 10.48550/ARXIV.1912.00013. [Google Scholar]
  5. Y. Boubacar Mainassara, Y. Esstafa and B. Saussereau, Estimating FARIMA models with uncorrelated but non-independent error terms. Stat. Inference Stoch. Process. 24 (2021) 549–608. [CrossRef] [MathSciNet] [Google Scholar]
  6. G.E.P. Box and G.M. Jenkins, Times series analysis. Forecasting and control. Holden-Day, San Francisco, Calif.-London- Amsterdam (1970). [Google Scholar]
  7. A. Brouste and H. Masuda, Efficient estimation of stable Levy process with symmetric jumps. Stat. Inference Stoch. Process. 21 (2018) 289–307. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Brouste, M. Soltane and E. Votsi, One-step estimation for the fractional Gaussian noise model at high-frequency. ESAIM: PS 24 (2020) 827–841. [CrossRef] [EDP Sciences] [Google Scholar]
  9. A. Dabye, A. Gounoung and Y. Kutoyants, Method of moments estimators and multi-step MLE for Poisson processes. J. Contemp. Math. Anal. 53 (2018) 187–196. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Dahlhaus, Efficient parameter estimation for self-similar processes. Ann. Statist. 17 (1989) 1749–1766. [CrossRef] [MathSciNet] [Google Scholar]
  11. Z. Ding, C.W. Granger and R.F. Engle, A long memory property of stock market returns and a new model. J. Empir. Finance 1 (1993) 83–106. [CrossRef] [Google Scholar]
  12. R.L. Dobrushin and P. Major, Non-central limit theorems for non-linear functional of Gaussian fields. Zeitschrift für Wahrscheinlichkeitstheorie ünd verwandte Gebiete 50 (1979) 27–52. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Fox and M.S. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986) 517–532. [MathSciNet] [Google Scholar]
  14. C. Francq and J.-M. Zakoian, Estimating linear representations of nonlinear processes. J. Statist. Plann. Inference 68 (1998) 145–165. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Francq and J.-M. Zakoian, GARCH Models: Structure, Statistical Inference and Financial Applications. Wiley (2010). [Google Scholar]
  16. L. Giraitis and D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle’s estimate. Probab. Theory Related Fields 86 (1990) 87–104. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Gloter and N. Yoshida, Adaptive estimation for degenerate diffusion processes. Electr. J. Stat. 15 (2021) 1424–1472. [Google Scholar]
  18. C.W.J. Granger and R. Joyeux, An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1 (1980) 15–29. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Hallin, M. Taniguchi, A. Serroukh and K. Choy, Local asymptotic normality for regression models with long-memory disturbance. Ann. Statist. 27 (1999) 2054–2080. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Hauser and R. Kunst, Fractionally integrated models with ARCH errors: with an application to the Swiss 1-month Euromarket interest rate. Rev. Qüant. Finance Account. 10 (1998) 95–113. [CrossRef] [Google Scholar]
  21. J.R.M. Hosking, Fractional differencing. Biometrika 68 (1981) 165–176. [CrossRef] [MathSciNet] [Google Scholar]
  22. H.E. Hurst, Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Eng. 116 (1951) 770–799. [CrossRef] [Google Scholar]
  23. K. Kamatani and M. Uchida, Hybrid multi-step estimators for stochastic differential equations based on sampled data. Stat. Inference Stoch. Process. 18 (2015) 177–204. [CrossRef] [MathSciNet] [Google Scholar]
  24. Y. Kutoyants and A. Motrunich, On multi-step MLE-process for Markov sequences. Metrika 79 (2016) 705–724. [CrossRef] [MathSciNet] [Google Scholar]
  25. L. Le Cam, On the asymptotic theory of estimation and testing hypothesis, Proc. 3rd Berkeley Sympos. Math. Statist. Probability 1 (1956) 129–156. [Google Scholar]
  26. S. Ling, Adaptive estimators and tests of stationary and nonstationary short- and long-memory ARFIMA-GARCH models. J. Am. Statist. Assoc. 98 (2003) 955–967. [CrossRef] [Google Scholar]
  27. S. Ling and W.K. Li, On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity. J. Am. Statist. Assoc. 92 (1997) 1184–1194. [CrossRef] [Google Scholar]
  28. H. Liitkepohl, New Introduction to Multiple Time Series Analysis. Springer, Berlin Heidelberg (2007). [Google Scholar]
  29. B.B. Mandelbrot, Une classe de processus stochastiques homothetiques a soi; application à la loi climatologique de H. E. Hurst. 260 (1965) 3274–3277. [Google Scholar]
  30. B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422–437. [CrossRef] [MathSciNet] [Google Scholar]
  31. B.B. Mandelbrot and J.R. Wallis, Computer experiments with fractional Gaussian noises: Part 1. Averages and variances. Water Resoür. Res. 5 (1969) 228–241. [CrossRef] [Google Scholar]
  32. B.B. Mandelbrot and J.R. Wallis, Computer experiments with fractional Gaussian noises: Part 2. Rescaled ranges and spectra. Water Resoür. Res. 5 (1969) 242–259. [CrossRef] [Google Scholar]
  33. B.B. Mandelbrot and J.R. Wallis, Computer experiments with fractional Gaussian noises. Part 3: Mathematical appendix. Water Resoür. Res. 5 (1969) 260–267. [CrossRef] [Google Scholar]
  34. W. Palma, Long-memory time series, Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ (2007), theory and methods. [Google Scholar]
  35. R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2021). [Google Scholar]
  36. X. Shao, Nonstationarity-extended Whittle estimation. Econ. Theory 26 (2010) 1060–1087. [CrossRef] [Google Scholar]
  37. X. Shao, Parametric inference in stationary time series models with dependent errors. Scand. J. Stat. 39 (2012) 772–783. [CrossRef] [MathSciNet] [Google Scholar]
  38. M.S. Taqqu and V. Teverovsky, Robustness of Whittle-type estimators for time series with long-range dependence. Commün. Statist. Stoch. Models 13 (1997) 723–757. [CrossRef] [Google Scholar]
  39. P. Whittle, Estimation and information in stationary time series. Ark. Mat. 2 (1953) 423–434. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.