Open Access
Volume 27, 2023
Page(s) 174 - 220
Published online 20 January 2023
  1. H. Andersson and T. Britton, Stochastic epidemic models and their statistical analysis. Vol. 151 of Lecture Notes in Statistics. Springer-Verlag (2000). [Google Scholar]
  2. K.B. Athreya and P.E. Ney, Branching processes. Springer (1972). [Google Scholar]
  3. N. Balaban, J. Merrin, R. Chait, L. Kowalik and S. Leibler, Bacterial persistence as a phenotypic switch. Science 305 (2004) 1622–1625. [CrossRef] [PubMed] [Google Scholar]
  4. M.A. Bautista, C. Zhang and R.J. Whitaker, Virus-induced dormancy in the Archaeon Sulfolobus islandicus, mBio 6 (2015) e02565–14. [CrossRef] [PubMed] [Google Scholar]
  5. A. Bize et al., A unique virus release mechanism in the Archaea. PNAS 106 (2009) 11306–11311. [CrossRef] [PubMed] [Google Scholar]
  6. E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection. Math. Biosci. 149 (1998) 57–76. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Blath, F. Hermann and M. Slowik, A branching process model for dormancy and seed banks in randomly fluctuating environments. J. Math. Biol. 83 (2021) article number: 17. [CrossRef] [PubMed] [Google Scholar]
  8. J. Blath and A. Tobias, Invasion and fixation of microbial dormancy traits under competitive pressure. Stoch. Proc. Appl. 130 (2020) 7363–7395. [CrossRef] [Google Scholar]
  9. J. Blath and A. Tobias, The interplay of dormancy and transfer in bacterial populations: invasion, fixation and coexistence regimes. Theoret. Pop. Biol. 139 (2021) 18–49. [CrossRef] [Google Scholar]
  10. N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Appl. 116 (2006) 1127–1160. [CrossRef] [Google Scholar]
  11. N.G. Chetaev, The Stability of Motion. English translation: Pergamon Press, Oxford (1961). [Google Scholar]
  12. D. Cohen, Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12 (1966) 110–129. [Google Scholar]
  13. C. Coron, M. Costa, F. Laroche, H. Leman and C. Smadi, Emergence of homogamy in a two-loci stochastic population model. ALEA, Lat. Am. J. Probab. Math. Stat. 18 (2021) 469–508. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Dombry, C. Mazza and V. Bansaye, Phenotypic diversity and population growth in a fluctuating environment. Adv. Appl. Probab. 43 (2011) 375–398. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Ellner, Competition and dormancy: a reanalysis and review. Am. Natural. 130 (1987) 798–803. [CrossRef] [Google Scholar]
  16. S.N. Ethier and T.G. Kurtz, Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York (1986). [Google Scholar]
  17. M. Freidlin and A.D. Wentzell, Vol. 260 of Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Springer (1984). [Google Scholar]
  18. H.-O. Georgii and E. Baake, Supercritical multitype branching processes: the ancestral types of typical individuals. Adv. App. Probab. 35 (2003) 1090–1110. [CrossRef] [Google Scholar]
  19. H. Gulbudak and J. Weitz, A touch of sleep: biophysical model of contact-mediated dormancy of Archaea by viruses. Proc. R. Soc. B 283 (2016) 20161037. [CrossRef] [PubMed] [Google Scholar]
  20. H. Gulbudak and J. Weitz, Heterogeneous viral strategies promote coexistence in virus-microbe systems. J. Theor. Biol. 462 (2018). [Google Scholar]
  21. S. Jackson, P. Fineran, Bacterial dormancy curbs phage epidemics. Nature 570 (2019) 173–174. [CrossRef] [PubMed] [Google Scholar]
  22. E. Kussel and S. Leibler, Phenotypic diversity, population growth, and information in fluctuating environments. Science 309 (2005) 2075–2078. [CrossRef] [PubMed] [Google Scholar]
  23. M. Kuwamura and H. Chiba, Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators. Chaos 19 (2009). [Google Scholar]
  24. M. Kuwamura, T. Nakazawa and T. Ogawa, A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58 (2009) 459–479. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. R.G. Lalonde and B.D. Roitberg, Chaotic dynamics can select for long-term dormancy. Am. Natural. 168 (2006) 127–131. [CrossRef] [PubMed] [Google Scholar]
  26. J.T. Lennon and S.E. Jones, Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9 (2011) 119–130. [CrossRef] [PubMed] [Google Scholar]
  27. J.T. Lennon, F. den Hollander, M. Wilke Berenguer and J. Blath, Principles of seed banks: Complexity emerging from dormancy. Nat. Corrun. 12 (2021) article number: 4807. [Google Scholar]
  28. T. Malik and H. Smith, Does dormancy increase fitness of bacterial populations in time-varying environments? Bull. Math. Biol. 70 (2008) 1140–1162. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  29. E. McCauley and W.W. Murdoch, Predator-prey dynamics in environments rich and poor in nutrients. Nature 343 (1990) 455–457. [CrossRef] [Google Scholar]
  30. J. Meeske, S. Nakandakari-Higa and L. Marraffini, Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570 (2019) 241–245. [CrossRef] [PubMed] [Google Scholar]
  31. E.R.J. Quemin, P. Chlanda, M. Sachse, P. Forterre, D. Prangishvili and M. Krupovica, Eukaryotic-Like Virus Budding in Archaea. rBio 7 (2016) e01439–16. [Google Scholar]
  32. Z.-X. Tan, J.-M. Kohi, E. Koonin and K.H. Cheong, Predator dormancy is a stable adaptive strategy due to Parrondo’s paradox. Adv. Sci. 7 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.