Open Access
Volume 27, 2023
Page(s) 221 - 277
Published online 20 January 2023
  1. D. Ahlberg, S. Griffiths, S. Janson and R. Morris, Competition in growth and urns. Rand. Struct. Algor. 54 (2019) 211–227. [CrossRef] [Google Scholar]
  2. D. Aldous, Stopping times and tightness. Ann. Probab. 6 (1978) 335–340. [Google Scholar]
  3. K. Athreya and P. Ney, Branching Processes. Springer Berlin Heidelberg (1972). [Google Scholar]
  4. F. Austerlitz, B. Jung-Muller, B. Godelle and P.-H. Gouyon, Evolution of coalescence times, genetic diversity and structure during colonization. Theor. Popul. Biol. 51 (1997) 148–164. [CrossRef] [Google Scholar]
  5. N. Barton, A. Etheridge, J. Kelleher and A. Veber, Genetic hitchhiking in spatially extended populations. Theor. Popul. Biol. 87 (2013) 75–89. [CrossRef] [Google Scholar]
  6. N. Barton, A. Etheridge and A. Veber, A new model for evolution in a spatial continuum. Electr. J. Probab. 15 (2010) 162–216. [Google Scholar]
  7. H. Berestycki and G. Nadin, Asymptotic spreading for general heterogeneous Fisher-KPP type equations. Mew,. Arn,. Math. Soc. (In press). [Google Scholar]
  8. L. Bertini and G. Giacomin, Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183 (1997) 571–607. [CrossRef] [Google Scholar]
  9. N. Biswas, A. Etheridge and A. Klimek, The spatial Lambda-Fleming-Viot process with fluctuating selection. Electr. J. Probab. 26 (2021) 1–51. [Google Scholar]
  10. E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul and R. Voituriez, Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration. Comp. Rend. Mathémat. 350 (2012) 761–766. [CrossRef] [Google Scholar]
  11. V. Calvez, C. Henderson, S. Mirrahimi, O. Turanova and T. Dumont, Non-local competition slows down front acceleration during dispersal evolution. Ann. Henri Lebes. 5 (2022) 1–71. [CrossRef] [Google Scholar]
  12. S. Carstens and T. Richthammer, The two-type continuum Richardson model: nondependence of the survival of both types on the initial configuration. Adv. Appl. Probab. 43 (2011) 597–615. [CrossRef] [MathSciNet] [Google Scholar]
  13. J. Chetwynd-Diggle and A. Klimek, Rare mutations in the spatial Lambda-Fleming-Viot model in a fluctuating environment and SuperBrownian Motion. Preprint arXiv:1901.04374 (2019). [Google Scholar]
  14. M. Deforet, C. Carmona-Fontaine, K. Korolev and J. Xavier, Evolution at the edge of expanding populations. Am. Natural. 194 (2019) 291–305. [CrossRef] [PubMed] [Google Scholar]
  15. M. Deijfen, Asymptotic shape in a continuum growth model. Adv. Appl. Probab. 35 (2003) 303–318. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Deijfen and O. Häggström, Coexistence in a two-type continuum growth model. Adv. Appl. Probab. 36 (2004) 973–980. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Deijfen and O. Häggsträm, The two-type Richardson model with unbounded initial configurations. Ann. Appl. Probab. 17 (2007) 1639–1656. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Deijfen, O. Haggstrom and J. Bagley, A stochastic model for competing growth on Rd. Markov Process. Related Fields 10 (2004) 217–248. [MathSciNet] [Google Scholar]
  19. R. Durrett and W.-T. L. Fan, Genealogies in expanding populations. Ann. Appl. Probab. 26 (2016) 3456–3490. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Eden, A two-dimensional growth process, in Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, vol. 4. University of California Press Berkeley 4 (1961) 223–239. [Google Scholar]
  21. A. Etheridge, Drift, draft and structure: some mathematical models of evolution. Banach Center Publ. 80 (2008) 121–144. [CrossRef] [Google Scholar]
  22. A. Etheridge, Some Mathematical Models from Population Genetics: Ecole D’Été de Probabilités de Saint-Flour XXXIX-2009, vol. 2012. Springer Science & Business Media (2011). [Google Scholar]
  23. A. Etheridge, N. Freeman and S. Penington, Branching Brownian motion, mean curvature flow and the motion of hybrid zones. Electr. J. Probab. 22 (2017) 1–40. [Google Scholar]
  24. A. Etheridge, N. Freeman, S. Penington and D. Straulino, Branching Brownian motion and selection in the spatial Lambda- Fleming-Viot process. Ann. Appl. Probab. 27 (2017) 2605–2645. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Etheridge, N. Freeman and D. Straulino, The Brownian net and selection in the spatial Lambda-Fleming-Viot process. Electr. J. Probab. 22 (2017) 1–36. [Google Scholar]
  26. A. Etheridge and S. Penington, Genealogies in bistable waves. Electr. J. Probab. 27 (2022) 1–99. [Google Scholar]
  27. A. Etheridge, A. Veber and F. Yu, Rescaling limits of the spatial Lambda-Fleming-Viot process with selection. Electr. J. Probab. 25 (2020) 1–89. [Google Scholar]
  28. S. Ethier and T. Kurtz, Markov processes: characterization and convergence. Wiley (1986). [Google Scholar]
  29. R. Fisher, The wave of advance of advantageous genes. Ann. Eugenics 7 (1937) 355–369. [CrossRef] [Google Scholar]
  30. R. Forien and S. Penington, A central limit theorem for the spatial Lambda-Fleming-Viot process with selection. Electr. J. Probab. 22 (2017) 1–68. [Google Scholar]
  31. E. Gracia, F. Botella, J. Anadon, P. Edelaar, D. Harris and A. Gimenez, Surfing in tortoises? Empirical signs of genetic structuring owing to range expansion. Biol. Lett. 9 (2013) 20121091. [CrossRef] [PubMed] [Google Scholar]
  32. O. Hallatschek, P. Hersen, S. Ramanathan and D. Nelson, Genetic drift at expanding frontiers promotes gene segregation. Proc. Natl. Acad. Sci. 104 (2007) 19926–19930. [CrossRef] [PubMed] [Google Scholar]
  33. O. Hallatschek and D. Nelson, Life at the front of an expanding population. Evolution 64 (2010) 193–206. [CrossRef] [Google Scholar]
  34. O. Hallatschek and D.R. Nelson, Gene surfing in expanding populations. Theor. Popul. Biol. 73 (2008) 158–170. [CrossRef] [Google Scholar]
  35. M. Huergo, M. Pasquale, A. Bolzan, A. Arvia and P. Gonzalez, Morphology and dynamic scaling analysis of cell colonies with linear growth fronts. Phys. Rev. E 82 (2010) 031903. [CrossRef] [PubMed] [Google Scholar]
  36. R. Jullien and R. Botet, Aggregation and fractal aggregates. Ann. Telecomm. 41 (1987) 343. [Google Scholar]
  37. O. Kallenberg, Foundations of modern probability. Springer Science & Business Media (2006). [Google Scholar]
  38. M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986) 889. [CrossRef] [PubMed] [Google Scholar]
  39. A. Klimek and T. Rosati, The spatial Lambda-Fleming-Viot process in a random environment. Preprint arXiv:2004.05931 (2020). [Google Scholar]
  40. A. Kolmogorov, I. Petrovskii and N. Piskunov, Etude de l’equation de la chaleur, de la matiere et son application à un probleme biologique. Bull. Moskov. Gos. Univ. Mat. Mekh 1 (1937) 125. [Google Scholar]
  41. K. Korolev, M. Avlund, O. Hallatschek and D. Nelson, Genetic demixing and evolution in linear stepping stone models. Rev. Mod. Phys. 82 (2010) 1691. [CrossRef] [PubMed] [Google Scholar]
  42. S. Krone and C. Neuhauser, Ancestral processes with selection. Theor. Popul. Biol. 51 (1997) 210–237. [CrossRef] [Google Scholar]
  43. C. Mueller and R. Sowers, Random travelling waves for the KPP equation with noise. J. Funct. Anal. 128 (1995) 439–498. [CrossRef] [MathSciNet] [Google Scholar]
  44. C. Neuhauser and S. Krone, The genealogy of samples in models with selection. Genetics 145 (1997) 519–534. [CrossRef] [PubMed] [Google Scholar]
  45. S. Peischl and L. Excoffier, Expansion load: recessive mutations and the role of standing genetic variation. Mol. Ecol. 24 (2015) 2084–2094. [CrossRef] [Google Scholar]
  46. Y.V. Prokhorov, Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1 (1956) 157–214. [CrossRef] [Google Scholar]
  47. R. Rebolledo, Sur l’existence de solutions àa certains problàemes de semi-martingales. C.R. Acad. Sci. Paris 790 (1980) 843–846. [Google Scholar]
  48. T. Seppäläinen, Lecture notes on the corner growth model, Unpublished notes (2009). Available at [Google Scholar]
  49. A. Veber and A. Wakolbinger, The spatial Lambda-Fleming-Viot process: An event-based construction and a lookdown representation. Ann. l’l.H.P. Probab. Stat. 51 (2015) 570–598. [Google Scholar]
  50. C. Wang, P. Liu and J. Bassingthwaighte, Off-lattice Eden-C cluster growth model. J. Phys. A: Math. General 28 (1995) 2141. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.