Open Access
Issue
ESAIM: PS
Volume 27, 2023
Page(s) 136 - 155
DOI https://doi.org/10.1051/ps/2022016
Published online 20 January 2023
  1. A. Brault, Solving Rough Differential Equations with the Theory of Regularity Structures. Springer International Publishing, Cham (2019), pp. 127–164. [Google Scholar]
  2. L. Broux and L. Zambotti, The sewing lemma for 0 < γ ≤ 1. Preprint arXiv:2110.06928 (2021). [Google Scholar]
  3. F. Caravenna and L. Zambotti, Hairer’s reconstruction theorem without regularity structures. EMS Surv. Math. Sci. 7 (2020) 207–251. [Google Scholar]
  4. A. Chandra and H. Weber, Stochastic PDEs, regularity structures, and interacting particle systems. Ann. Fac. Sci. Toulouse Math. (6) 26 (2017) 847–909. [Google Scholar]
  5. I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41 (1988) 909–996. [Google Scholar]
  6. P.K. Friz and M. Hairer, A course on rough paths, Universitext. Springer, Cham (2014). With an introduction to regularity structures. [Google Scholar]
  7. P. Friz and N. Victoir, A variation embedding theorem and applications. J. Funct. Anal. 239 (2006) 631–637. [Google Scholar]
  8. P. Friz and N. Victoir, Multidimensional stochastic processes as rough paths. Theory and applications. Cambridge University Press (2010). [Google Scholar]
  9. M. Hairer, A theory of regularity structures. Invent. Math. 198 (2014) 269–504. [Google Scholar]
  10. M. Hairer, Introduction to regularity structures. Braz. J. Probab. Stat. 29 (2015) 175–210. [Google Scholar]
  11. M. Hairer and C. Labbe, The reconstruction theorem in Besov spaces. J. Funct. Anal. 273 (2017) 2578–2618. [Google Scholar]
  12. S. Hensel and T. Rosati, Modelled distributions of Triebel-Lizorkin type. Studia Math. 252 (2020) 251–297. [Google Scholar]
  13. C. Liu, D.J. Promel and J. Teichmann, Optimal extension to Sobolev rough paths. Preprint arXiv:1811.05173 (2018). [Google Scholar]
  14. C. Liu, D.J. Prömel and J. Teichmann, On Sobolev rough paths. J. Math. Anal. Appl. 497 (2021) 124876. [Google Scholar]
  15. C. Liu, D.J. Promel and J. Teichmann, Stochastic analysis with modelled distributions. Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021) 343–379. [Google Scholar]
  16. T.J. Lyons, M. Caruana and T. Levy, Differential equations driven by rough paths. Vol. 1908 of Lecture Notes in Mathematics. Springer, Berlin (2007). [Google Scholar]
  17. T. Lyons and N. Victoir, An extension theorem to rough paths. Ann. Inst. H. Poincare Anal. Non Linéaire 24 (2007) 835–847. [Google Scholar]
  18. T.J. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoam. 14 (1998) 215–310. [Google Scholar]
  19. Y. Meyer, Wavelets and operators, vol. 37 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1992). Translated from the 1990 French original by D. H. Salinger. [Google Scholar]
  20. C. Schneider, Traces of Besov and Triebel-Lizorkin spaces on domains. Math. Nachrichten 284 (2011) 572–586. [Google Scholar]
  21. J. Simon, Sobolev, Besov and Nikolskii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl. (4) 157 (1990) 117–148. [Google Scholar]
  22. N. Tapia and L. Zambotti, The geometry of the space of branched rough paths. Proc. Lond. Math. Soc. (3) 121 (2020) 220–251. [Google Scholar]
  23. H. Triebel, Theory of Function Spaces. Birkhöuser Verlag, Basel (2010). Reprint of the 1983 Edition. [Google Scholar]
  24. J. Unterberger, Holder-continuous rough paths by Fourier normal ordering. Commun. Math. Phys. 298 (2010) 1–36. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.