Open Access
Issue
ESAIM: PS
Volume 27, 2023
Page(s) 776 - 809
DOI https://doi.org/10.1051/ps/2023014
Published online 31 August 2023
  1. C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, 3rd ed. Springer, Berlin (2006). [Google Scholar]
  2. S.K. Berberian, Notes on Spectral Theory. Van Nostrand Mathematical Studies, No. 5. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London (1966). [Google Scholar]
  3. S.K. Berberian, Naimark’s moment theorem. Michigan Math. J. 13 (1966) 171–184. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.K. Brooks, On the vitali-hahn-saks and nikodym theorems. Proc. Natl. Aca. Sci. U.S.A. 64 (1969) 468–471. [CrossRef] [PubMed] [Google Scholar]
  5. V. Characiejus and A. Račkauskas, The central limit theorem for a sequence of random processes with space-varying long memory. Lithuanian Math. J. 53 (2013) 149–160. [CrossRef] [MathSciNet] [Google Scholar]
  6. V. Characiejus and A. Račkauskas, Operator self-similar processes and functional central limit theorems. Stochast. Processes a Appl. 124 (2014) 2605–2627. [CrossRef] [Google Scholar]
  7. J.B. Conway, A Course in Functional Analysis, Vol. 96 of Graduate Texts in Mathematics, 2nd ed. Springer-Verlag, New York (1990). [Google Scholar]
  8. J.B. Conway, A Course in Operator Theory, Vol. 21 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2000). [Google Scholar]
  9. J. Diestel and J.J. Uhl, Jr., Vector Measures. American Mathematical Society, Providence, RI (1977). [CrossRef] [Google Scholar]
  10. N. Dinculeanu, Vector Measures. Pergamon Press, Oxford (1967). [Google Scholar]
  11. N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces, Vol. 48. John Wiley & Sons (2011). [Google Scholar]
  12. M.-C. Düker, Limit theorems for Hilbert space-valued linear processes under long range dependence. Stochast. Processes Appl. 128 (2018) 1439–1465. [CrossRef] [Google Scholar]
  13. R.B. Holmes, Mathematical foundations of signal processing. SIAM Rev. 21 (1979) 361–388. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Hörmann, L. Kidziński and M. Hallin, Dynamic functional principal components. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 (2015) 319–348. [CrossRef] [MathSciNet] [Google Scholar]
  15. Y. Kakihara, Multidimensional Second Order Stochastic Processes. World Scientific (1997). [CrossRef] [Google Scholar]
  16. G. Kallianpur and V.S. Mandrekar, Spectral theory of stationary H-valued processes. J. Multivariate Anal. 1 (1971) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  17. A.N. Kolmogoroff, Stationary sequences in Hilbert’s space. Bol. Moskovskogo Gosudarstvenogo Univ. Mat. 2 (1941) 40. [Google Scholar]
  18. D. Li, P.M. Robinson and H.L. Shang, Long-range dependent curve time series. J. Am. Stat. Assoc. 115 (2020) 957–971. [CrossRef] [Google Scholar]
  19. V.S. Mandrekar and H. Salehi, The square-integrability of operator-valued functions with respect to a non-negative operator-valued measure and the Kolmogorov isomorphism theorem. Indiana Univ. Math. J. 20 (1970/1971) 545–563. [CrossRef] [MathSciNet] [Google Scholar]
  20. P.R. Masani, Recent trends in multivariate prediction theory, in Multivariate Analysis (Proc. Internat. Sympos., Dayton, Ohio, 1965) (1966), 351–382. [Google Scholar]
  21. V.M. Panaretos and S. Tavakoli, Fourier analysis of stationary time series in function space. Ann. Statist. 41 (2013) 568–603. [CrossRef] [MathSciNet] [Google Scholar]
  22. V.M. Panaretos and S. Tavakoli, Cramer–Karhunen–Loeve representation and harmonic principal component analysis of functional time series. Stochast. Processes Appl. 123 (2013) 2779–2807. [CrossRef] [Google Scholar]
  23. V. Pipiras and M.S. Taqqu, Long-Range Dependence and Self-Similarity. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2017). [Google Scholar]
  24. A. Račkauskas and C. Suquet, Operator fractional Brownian motion as limit of polygonal lines processes in hilbert space. Stochast. Dyn. 11 (2011) 49–70. [CrossRef] [Google Scholar]
  25. W. Rudin, Fourier Analysis on Groups. Wiley Classics Library. John Wiley & Sons, Inc., New York (1990). [CrossRef] [Google Scholar]
  26. S. Tavakoli, Fourier Analysis of Functional Time Series, with Applications to DNA Dynamics. PhD thesis, MATHAA, EPFL (2014). [Google Scholar]
  27. A. van Delft and M. Eichler, Locally stationary functional time series. Electron. J. Statist. 12 (2018) 107–170. [CrossRef] [Google Scholar]
  28. A. van Delft and M. Eichler, A note on Herglotz’s theorem for time series on function spaces. Stochast. Process. Appl. 130 (2020) 3687–3710. [CrossRef] [Google Scholar]
  29. J. Weidmann, Linear Operators in Hilbert Spaces, Vol. 68 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin (1980). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.