Open Access
Issue
ESAIM: PS
Volume 27, 2023
Page(s) 749 - 775
DOI https://doi.org/10.1051/ps/2023011
Published online 08 August 2023
  1. M. Ajtai, J. Komlós and G. Tusnády, On optimal matchings. Combinatorica 4 (1984) 259–264. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Barthe and C. Bordenave, Combinatorial optimization over two random point sets, in Séminaire de Probabilités XLV. Springer (2013) 483–535. [Google Scholar]
  3. E. Boissard and T. Le Gouic, On the mean speed of convergence of empirical and occupation measures in Wasserstein distance. Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014) 539–563. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Bolley, A. Guillin and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Related Fields 137 (2007) 541–593. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Dereich, M. Scheutzow and R. Schottstedt, Constructive quantization: approximation by empirical measures. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013) 1183–1203. [CrossRef] [MathSciNet] [Google Scholar]
  6. V. Dobrić and J.E. Yukich, Asymptotics for transportation cost in high dimensions. J. Theoret. Probab. 8 (1995) 97–118. [CrossRef] [MathSciNet] [Google Scholar]
  7. R.M. Dudley, The speed of mean Glivenko–Cantelli convergence. Ann. Math. Statist. 40 (1968) 40–50. [Google Scholar]
  8. N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 (2015) 707–738. [Google Scholar]
  9. T. Le Gouic, Localisation de masse et espaces de Wasserstein. Thèse de l’Université Toulouse 3 Paul Sabatier (2013). [Google Scholar]
  10. J. Lei, Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces. Bernoulli 26 (2020) 767–798. [MathSciNet] [Google Scholar]
  11. H. Luschgy and G. Pagès, Marginal and functional quantization of stochastic processes. Book in preparation. [Google Scholar]
  12. C.A. Rogers, Covering a sphere with spheres. Mathematika 10 (1963) 157–164. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.L. Verger-Gaugry, Covering a ball with smaller equal balls in ℝn. Discrete Comput. Geom. 33 (2005) 143–155. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Weed and F. Bach, Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. Bernoulli 25 (2019) 2620–2648. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.