Issue |
ESAIM: PS
Volume 13, January 2009
|
|
---|---|---|
Page(s) | 261 - 275 | |
DOI | https://doi.org/10.1051/ps:2008011 | |
Published online | 04 July 2009 |
Hölderian invariance principle for Hilbertian linear processes
1
Department of Mathematics and Informatics, Vilnius
University, Naugarduko 24, 2006 Vilnius, Lithuania; alfredas.rackauskas@maf.vu.lt
2
Institute of Mathematics and Informatics, Akademijos str. 4,
08663 Vilnius, Lithuania
3
Laboratoire P. Painlevé,
UMR 8524 CNRS, Université Lille I, Bât. M2, Cité Scientifique,
59655 Villeneuve d'Ascq Cedex, France; Charles.Suquet@math.univ-lille1.fr
Received:
14
December
2007
Revised:
11
March
2008
Let be the polygonal partial sums processes built on the linear processes , n ≥ 1, where are i.i.d., centered random elements in some separable Hilbert space and the ai's are bounded linear operators , with . We investigate functional central limit theorem for in the Hölder spaces of functions such that ||x(t + h) - x(t)|| = o(p(h)) uniformly in t, where p(h) = hαL(1/h), 0 ≤ h ≤ 1 with 0 ≤ α ≤ 1/2 and L slowly varying at infinity. We obtain the weak convergence of to some valued Brownian motion under the optimal assumption that for any c>0, when t tends to infinity, subject to some mild restriction on L in the boundary case α = 1/2. Our result holds in particular with the weight functions p(h) = h1/2lnβ(1/h), β > 1/2>.
Résumé
Soit le processus polygonal de sommes partielles bâti sur le processus linéaire , n ≥ 1, les étant des éléments aléatoires i.i.d., centrés d'un espace de Hilbert séparable et les ai's des opérateurs linéaires bornés , vérifiant . Nous étudions le théorème limite central fonctionnel pour dans les espaces de Hölder de fonctions vérifiant ||x(t + h) - x(t)|| = o(p(h)) uniformément en t, où p(h) = hαL(1/h), 0 ≤ h ≤ 1 avec 0 ≤ α ≤ 1/2 et L à variation lente. Nous prouvons la convergence en loi dans de vers un mouvement brownien à valeurs dans , sous la condition optimale que pour tout c>0, quand t tend vers l'infini, au prix dans le cas limite α = 1/2 d'une légère restriction sur L. Notre résultat s'applique en particulier au cas p(h) = h1/2lnβ(1/h), β > 1/2.
Mathematics Subject Classification: 60F17 / 60B12
Key words: Central limit theorem in Banach spaces / Hölder space / functional central limit theorem / linear process / partial sums process
© EDP Sciences, SMAI, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.