Free Access
Volume 13, January 2009
Page(s) 261 - 275
Published online 04 July 2009
  1. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation. Encyclopaedia of Mathematics and its Applications. Cambridge University Press (1987). [Google Scholar]
  2. J. Dedecker and F. Merlevède, The conditional central limit theorem in Hilbert spaces. Stoch. Process. Appl. 108 (2003) 229–262. [Google Scholar]
  3. J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak Dependence: With Examples and Applications, volume 190 of Lect. Notes Statist. Springer (2007). [Google Scholar]
  4. D. Hamadouche, Invariance principles in Hölder spaces. Portugal. Math. 57 (2000) 127–151. [MathSciNet] [Google Scholar]
  5. M. Juodis, A. Račkauskas and Ch. Suquet, Hölderian functional central limit theorems for linear processes. ALEA Lat. Am. J. Probab. Math. Stat. 5 (2009) 47–64. [MathSciNet] [Google Scholar]
  6. J. Kuelbs, The invariance principle for Banach space valued random variables. J. Multiv. Anal. 3 (1973) 161–172. [CrossRef] [Google Scholar]
  7. J. Lamperti, On convergence of stochastic processes. Trans. Amer. Math. Soc. 104 (1962) 430–435. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer-Verlag, Berlin, Heidelberg (1991). [Google Scholar]
  9. F. Merlevède, M. Peligrad and S. Utev, Sharp conditions for the CLT of linear processes in a Hilbert space. J. Theoret. Probab. 10 (1997) 681–693. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Merlevède, M. Peligrad and S. Utev, Recent advances in invariance principles for stationary sequences. Probab. Surveys 3 (2006) 1–36. [Google Scholar]
  11. A. Račkauskas and Ch. Suquet, Hölder versions of Banach spaces valued random fields. Georgian Math. J. 8 (2001) 347–362. [MathSciNet] [Google Scholar]
  12. A. Račkauskas and Ch. Suquet, Necessary and sufficient condition for the Hölderian functional central limit theorem. J. Theoret. Probab. 17 (2004) 221–243. [Google Scholar]
  13. A. Račkauskas and Ch. Suquet, Hölder norm test statistics for epidemic change. J. Statist. Plann. Inference 126 (2004) 495–520. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Račkauskas and Ch. Suquet, Central limit theorems in Hölder topologies for Banach space valued random fields. Theor. Probab. Appl. 49 (2004) 109–125. [Google Scholar]
  15. A. Račkauskas and Ch. Suquet, Testing epidemic changes of infinite dimensional parameters. Stat. Inference Stoch. Process. 9 (2006) 111–134. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Talagrand, Isoperimetry and integrability of the sum of independent Banach-space valued random variables. Ann. Probab. 17 (1989) 1546–1570. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.