Open Access
Volume 26, 2022
Page(s) 436 - 472
Published online 08 December 2022
  1. M. Agueh and G. Carlier, Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43 (2011) 904–924. [CrossRef] [MathSciNet] [Google Scholar]
  2. J. Alschuler and E. Boix-Adsera, Wasserstein barycenters are NP-hard to compute. Preprint [arXiv:2101.01100] (2021). [Google Scholar]
  3. P.C. Alvarez-Esteban, E. del Barrio, J.A. Cuesta-Albertos and C. Matrán, A fixed-point approach to barycenters in Wasserstein space. J. Math. Anal. Appi. 441 (2016) 744–762. [CrossRef] [Google Scholar]
  4. P.C. Lvarez-Esteban, E. del Barrio, J.A. Cuesta-Albertos and C. Matráan, Wide Consensus aggregation in the Wasserstein Space. Application to location-scatter families. Bernoulli 24 (2018) 3147–3179. [MathSciNet] [Google Scholar]
  5. L. Ambrosio, N. Gigli and G. Savará, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zurich, 2nd edn., Birkhäuser Verlag, Basel (2008). [Google Scholar]
  6. C. Andrieu, N. De Freitas, A. Doucet and M.I. Jordan, An introduction to MCMC for machine learning. Mach. Learn. 50 (2003) 5–43. [CrossRef] [Google Scholar]
  7. J. Backhoff-Veraguas, J. Fontbona, G. Rios and F. Tobar, Stochastic gradient descent in Wasserstein space. Preprint [arXiv:2201.04232] (2022). [Google Scholar]
  8. J.O. Berger, Statistical decision theory and Bayesian analysis. Springer Science & Business Media (2013). [Google Scholar]
  9. R.H. Berk et al., Limiting behavior of posterior distributions when the model is incorrect. Ann. Math. Stat. 37 (1966) 51–58. [CrossRef] [Google Scholar]
  10. J. Bigot and T. Klein, Characterization of barycenters in the Wasserstein space by averaging optimal transport maps. ESAIM: Probab. Stat. 22 (2018) 35–57. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  11. S. Brooks, A. Gelman, G. Jones and X.-L. Meng, Handbook of Markov chain Monte Carlo. CRC Press (2011). [Google Scholar]
  12. E. Cazelles, F. Tobar and J. Fontbona, A novel notion of barycenter for probability distributions based on optimal weak mass transport, 2021 Conference on Neural Information Processing Systems NeurIPS (2021) [arXiv:2102.13380]. [Google Scholar]
  13. S. Chewi, T. Maunu, P. Rigollet and A.J. Stromme, Gradient descent algorithms for Bures-Wasserstein barycenters, in Conference on Learning Theory, PMLR (2020) 1276–1304. [Google Scholar]
  14. J. Cuesta-Albertos, L. Ruschendorf and A. Tuero-Diaz, Optimal coupling of multivariate distributions and stochastic processes. J. Multivariate Anal. 46 (1993) 335–361. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Cuturi and A. Doucet, Fast computation of Wasserstein barycenters, in International Conference on Machine Learning (2014) 685–693. [Google Scholar]
  16. M. Cuturi and G. Peyrá, A smoothed dual approach for variational Wasserstein problems. SIAM J. Imag. Sci. 9 (2016) 320–343. [CrossRef] [Google Scholar]
  17. P. Diaconis and D. Freedman, On the consistency of Bayes estimates. Ann. Stat. (1986) 1–26. [Google Scholar]
  18. P. Dognin, I. Melnyk, Y. Mroueh, J. Ross, C.D. Santos and T. Sercu, Wasserstein barycenter model ensembling. Preprint [arXiv:1902.04999] (2019). [Google Scholar]
  19. D.C. Dowson and B.V. Landau, The Frechet distance between multivariate normal distributions. J. Multivariate Anal. 12 (1982) 450–455. [CrossRef] [MathSciNet] [Google Scholar]
  20. T.A. El Moselhy and Y.M. Marzouk, Bayesian inference with optimal maps. J. Comput. Phys. 231 (2012) 7815–7850. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Flamary and N. Courty, POT Python Optimal Transport library (2017). [Google Scholar]
  22. M. Fráchet, Les áláments aláatoires de nature quelconque dans un espace distanciá, in Annales de l’institut Henri Poincará 10 (1948) 215–310. [Google Scholar]
  23. S. Ghosal and A. van der Vaart, vol. 44 of Fundamentals of nonparametric Bayesian inference. Cambridge University Press (2017). [Google Scholar]
  24. C.R. Givens and R.M. Shortt, A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31 (1984) 231–240. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Goodman and J. Weare, Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5 (2010) 65–80. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Grendár and G. Judge, Asymptotic equivalence of empirical likelihood and Bayesian map. Ann. Statist. 37 (2009) 2445–2457. [CrossRef] [MathSciNet] [Google Scholar]
  27. S. Kim, D. Mesa, R. Ma and T.P. Coleman, Tractable fully Bayesian inference via convex optimization and optimal transport theory. Preprint [arXiv:1509.08582] (2015). [Google Scholar]
  28. Y.-H. Kim and B. Pass, Wasserstein barycenters over Riemannian manifolds. Adv. Math. 307 (2017) 640–683. [CrossRef] [MathSciNet] [Google Scholar]
  29. B.J.K. Kleijn, Bayesian asymptotics under misspecification, Ph.D. thesis, Vrije Universiteit Amsterdam (2004). [Google Scholar]
  30. B.J.K. Kleijn and A.W. Van der Vaart, The Bernstein-von-Mises theorem under misspecification. Electr. J. Stat. 6 (2012) 354–381. [Google Scholar]
  31. A. Korotin, V. Egiazarian, L. Lingxiao and E. Burnaev, Wasserstein Iterative Networks for Barycenter Estimation. [arXiv:2201.12245] (2022). [Google Scholar]
  32. J. Lacombe, J. Digne, N. Courty and N. Bonneel, Learning to generate Wasserstein barycenters. Preprint [arXiv:2102.12178] (2021). [Google Scholar]
  33. T. Le Gouic and J.-M. Loubes, Existence and consistency of Wasserstein Barycenters. Probab. Theory Related Fields 168 (2017) 901–917. [CrossRef] [MathSciNet] [Google Scholar]
  34. A. Mallasto, A. Gerolin and H.Q. Minh, Entropy-regularized 2-Wasserstein distance between Gaussian measures. Inf. Geometry (2021) 1–35. [Google Scholar]
  35. Y. Marzouk, T. Moselhy, M. Parno and A. Spantini, Sampling via measure transport: An introduction. Handbook of Uncertainty Quantification (2016) 1–41. [Google Scholar]
  36. P. Massart, Concentration Inequalities and Model Selection. Springer (2007). [Google Scholar]
  37. K.P. Murphy, Machine learning: a probabilistic perspective. The MIT Press, Cambridge, MA (2012). [Google Scholar]
  38. V.M. Panaretos and Y. Zemel, An invitation to statistics in Wasserstein space. SpringerBriefs in Probability and Mathematical Statistics, Springer, Cham (2020). [CrossRef] [Google Scholar]
  39. M. Parno, Transport maps for accelerated Bayesian computation, Ph.D. thesis, Massachusetts Institute of Technology (2015). [Google Scholar]
  40. B. Pass, Optimal transportation with infinitely many marginals. J. Funct. Anal. 264 (2013) 947–963. [CrossRef] [MathSciNet] [Google Scholar]
  41. G. Peyré and M. Cuturi, Computational optimal transport: with applications to data science. Found. Trends Mach. Learn. 11 (2019) 355–607. [CrossRef] [Google Scholar]
  42. H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Stat. (1951) 400–407. [CrossRef] [Google Scholar]
  43. F. Santambrogio, Optimal transport for applied mathematicians. Birkauser, NY (2015) 99–102. [Google Scholar]
  44. L. Schwartz, On Bayes procedures. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 4 (1965) 10–26. [CrossRef] [MathSciNet] [Google Scholar]
  45. C. Villani, Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI (2003). [CrossRef] [Google Scholar]
  46. C. Villani, Optimal transport. Old and new, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer-Verlag, Berlin (2009). [CrossRef] [Google Scholar]
  47. R. Wang, X. Wang and L. Wu, Sanov’s theorem in the Wasserstein distance: a necessary and sufficient condition. Stat. Probab. Lett. 80 (2010) 505–512. [CrossRef] [Google Scholar]
  48. Y. Zemel and V. Panaretos, Fréchet means and Procrustes analysis in Wasserstein space. Bernoulli 25 (2019) 932–976. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.