Open Access
Issue
ESAIM: PS
Volume 26, 2022
Page(s) 397 - 435
DOI https://doi.org/10.1051/ps/2022013
Published online 02 December 2022
  1. O. Arino, A survey of structured cell population dynamics. Acta Biotheor. 43 (1995) 3–25. [CrossRef] [PubMed] [Google Scholar]
  2. S. Asmussen and H. Hering Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Zeitsch. Wahrscheinlichkeitstheorie Verwandte Gebiete 36 (1976) 195–212. [Google Scholar]
  3. K.B. Athreya Limit theorems for multitype continuous time Markov branching processes. Zeitsch. Wahrscheinlichkeitstheorie Verwandte Gebiete 12 (1969) 320–332. [Google Scholar]
  4. W. Balmant, M.H. Sugai-Guérios, J.H. Coradin, N. Krieger, A.F. Junior and D.A. Mitchell, A model for growth of a single fungal hypha based on well-mixed tanks in series: simulation of nutrient and vesicle transport in aerial reproductive hyphae. PLoS One 10 (2015) e0120307. [Google Scholar]
  5. J. Banasiak, K. Pichér and R. Rudnicki Asynchronous exponential growth of a general structured population model. Acta Appl. Math. 119 (2012) 149–166. [CrossRef] [MathSciNet] [Google Scholar]
  6. V. Bansaye, B. Cloez, P. Gabriel and A. Marguet, A non-conservative Harris’ ergodic theorem. To appear in J. London Math. Soc. arXiv:1903.03946 (2019). [Google Scholar]
  7. V. Bansaye, J.-F. Delmas, L. Marsalle and V.C. Tran Limit theorems for Markov processes indexed by continuous time Galton-Watson trees. Ann. Appl. Probab. 21 (2011) 2263–2314. [CrossRef] [MathSciNet] [Google Scholar]
  8. D.J. Barry and G.A. Williams Microscopic characterisation of filamentous microbes: towards fully automated morphological quantification through image analysis. J. Microsc. 244 (2011) 1–20. [Google Scholar]
  9. J. Bertoin and A.R. Watson, A probabilistic approach to spectral analysis of growth-fragmentation equations. J. Funct. Anal. 274 (2018) 2163–2204. [Google Scholar]
  10. L. Boddy, J. Wood, E. Redman, J. Hynes and M.D. Fricker Fungal network responses to grazing. Fungal Genet. Biol. 47 (2010) 522–530. [CrossRef] [Google Scholar]
  11. G.P. Boswell and F.A. Davidson Modelling hyphal networks. Fungal Biol. Rev. 26 (2012) 30–38. [CrossRef] [Google Scholar]
  12. F. Brikci, J. Clairambault and B. Perthame Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math. Comput. Modell. 47 (2008) 699–713. [Google Scholar]
  13. J. Calvo, M. Doumic and B. Perthame Long-time asymptotics for polymerization models. Commun. Math. Phys. 363 (2018) 111–137. [CrossRef] [Google Scholar]
  14. J.A. Canizo, P. Gabriel and H. Yoldas Spectral gap for the growth-fragmentation equation via Harris’s Theorem. SIAM J. Math. Anal. 53 (2021) 5185–5214. [Google Scholar]
  15. V. Capasso and F. Flandoli On the mean field approximation of a stochastic model of tumour-induced angiogenesis. Eur. J. Appl. Math. 30 (2019) 619–658. [CrossRef] [Google Scholar]
  16. R. Catellier, Y. D’Angelo and C. Ricci, A mean-field approach to self-interacting networks, convergence and regularity. Math. Models Methods Appl. Sci. 31 (2021) 2597–2641. [Google Scholar]
  17. B. Chauvin Sur la propriéetée de branchement. Ann. IHP Probab. Statist. 22 (1986) 233–236. [Google Scholar]
  18. B. Cloez Limit theorems for some branching measure-valued processes. Adv. Appl. Probab. 49 (2017) 549–580. [Google Scholar]
  19. B. Cloez, B. de Saporta and T. Roget Long-time behavior and Darwinian optimality for an asymmetric size-structured branching process. J. Math. Biol. 83 (2021) 1–30. [Google Scholar]
  20. J. Dikec, A. Olivier, C. Bobéee, Y. D’Angelo, R. Catellier, P. David, F. Filaine, S. Herbert, C. Lalanne, H. Lalucque, L. Monasse, M. Rieu, G. Ruprich-Robert, A. Véeber, F. Chapeland-Leclerc and E. Herbert, Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserine. Sci. Rep. 10 (2020) 3131. [Google Scholar]
  21. M. Doumic, A. Olivier and L. Robert, Estimating the division rate from indirect measurements of single cells. ArXiv preprint arXiv:1907.05108 (2019). [Google Scholar]
  22. H. Du, M. Ayouz, P. Lv and P. Perrée, A lattice-based system for modeling fungal mycelial growth in complex environments. Physica A 511 (2018) 191–206. [Google Scholar]
  23. H. Du, T.-B.-T. Tran and P. Perrée, A 3-variable PDE model for predicting fungal growth derived from microscopic mechanisms. J. Theor. Biol. 470 (2019) 90–100. [Google Scholar]
  24. J. Engländer, S.C. Harris and A.E. Kyprianou Strong law of large numbers for branching diffusions. Ann. l'I.H.P. Probab. Stat. 46 (2010) 279–298. [Google Scholar]
  25. M. Fricker, L. Heaton, N. Jones and L. Boddy The Mycelium as a Network. Microbiol. Spectr. 5 (2017) 3131. [Google Scholar]
  26. L. Heaton, B. Obara, V. Grau, N. Jones, T. Nakagaki, L. Boddy and M.D. Fricker Analysis of fungal networks. Fungal Biol. Rev. 26 (2012) 12–29. [CrossRef] [Google Scholar]
  27. H. Kesten and B.P. Stigum, A Limit Theorem for Multidimensional Galton-Watson Processes, Ann. Math. Statist. 37 (1966) 1211–1223. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Lamour, F. Van Den Bosch, A.J. Termorshuizen and M.J. Jeger, Modelling the growth of soil-borne fungi in response to carbon and nitrogen. IMA J. Math. Appl. Med. Biol. 17 (2000) 329–346. [CrossRef] [Google Scholar]
  29. A. Marguet Uniform sampling in a structured branching population. Bernoulli 25 (2019) 2649–2695. [Google Scholar]
  30. S. Mischler and J. Scher Spectral analysis of semigroups and growth-fragmentation equations. Ann. l'Institut Henri Poincare (C) Non Linear Anal. 33 (2016) 849–898. [CrossRef] [Google Scholar]
  31. E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators. Cambridge Tracts in Mathematics, Cambridge University Press (1984). [Google Scholar]
  32. B. Perthame, Transport equations in biology. Springer Science and Business Media (2006). [Google Scholar]
  33. S.H. Tindemans, N. Kern and B.M. Mulder The diffusive vesicle supply center model for tip growth in fungal hyphae. J. Theor. Biol. 238 (2006) 937–948. [Google Scholar]
  34. V.C. Tran Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM: PS 12 (2008) 345–386. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.