Open Access
Volume 26, 2022
Page(s) 378 - 396
Published online 24 November 2022
  1. D. Applebaum, Lévy processes ans stochastic integrals in Banach spaces. Probab. Math. Statist. 27 (2007) 75-88. [MathSciNet] [Google Scholar]
  2. W.M. Bednorz, R.M. Łochowski and R. Martynek, On tails of symmetric and totally asymmetric a-stable distributions. Prob. Math. Statist. 41 (2021) 321-345. [Google Scholar]
  3. A.N. Borodin and P. Salminen, Handbook of Brownian Motion - Facts and Formulae. Second Edition. Birkhäuser (2002). [CrossRef] [Google Scholar]
  4. T.F. Chan and S. Esedoglu, Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65 (2005) 1817-837. [CrossRef] [MathSciNet] [Google Scholar]
  5. K.B. Erickson, The strong law of large numbers when the mean is undefined. Trans. Amer. Math. Soc. 185 (1973) 371-381. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Kallsen and J. Muhle-Karbe, Option pricing and hedging with small transaction costs. Math. Finance 25 (2015) 702-723. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Kallsen and J. Muhle-Karbe, The general structure of optimal investment and consumption with small transaction costs. Math. Finance 27 (2017) 659-703. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.T. Kent, Eigenvalue expansions for diffusion hitting times. Z. Wahrscheinlichkeitstheor. Verw. Geb. 52 (1980) 309-319. [CrossRef] [Google Scholar]
  9. R.M. Łochowski, A new inequality for the Riemann-Stieltjes integrals driven by irregular signals in Banach spaces. J. Inequal. Appl. 2018(20) (2018) 1-20. [Google Scholar]
  10. R.M. Łochowski and R. Ghomrasni, The play operator, the truncated variation and the generalisation of the Jordan decomposition. Math. Methods Appl. Sci. 38 (2015) 403-419. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Sato, Łévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press (1999). [Google Scholar]
  12. G. Serafin, Exit times densities of the Bessel process. Proc. Am. Math. Soc. 145 (2017) 3165-3178. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.