Open Access
Issue |
ESAIM: PS
Volume 26, 2022
|
|
---|---|---|
Page(s) | 352 - 377 | |
DOI | https://doi.org/10.1051/ps/2022009 | |
Published online | 14 September 2022 |
- M.T. Barlow, J. Pitman and M. Yor, On Walsh’s Brownian motions. Séminaire de probabilités de Strasbourg 23 (1989) 275–293. [Google Scholar]
- R.F. Bass, Probabilistic Techniques in Analysis. Probability and its Applications. Springer-Verlag, New York (1995). [Google Scholar]
- P. Brémaud, Discrete Probability Models and Methods. Vol. 78 of Probability Theory and Stochastic Modelling. Springer, Cham (2017). [CrossRef] [Google Scholar]
- D. Dolgopyat, M. Lenci and P. Néndori, Global observables for RW: Law of large numbers. Ann. l'Inst. Henri Poincaré — Probab. Stat. 57 (2021) 94–115. [Google Scholar]
- M. Freidlin and S.-J. Sheu, Diffusion processes on graphs: stochastic differential equations, large deviation principle. Probab. Theory Related Fields 116 (2000) 181–220. [CrossRef] [MathSciNet] [Google Scholar]
- I.I. Gikhman and A.V. Skorokhod, The Theory of Stochastic Processes I. Vol. 210 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin (1974). [Google Scholar]
- D.S. Grebenkov, D. Van Nguyen and J.-R. Li, Exploring diffusion across permeable barriers at high gradients. I. Narrow pulse approximation. J. Magn. Resonance 248 (2014) 153–163. [CrossRef] [Google Scholar]
- H. Hajri, Stochastic flows related to Walsh Brownian motion. Electr. J. Probab. 16 (2011) 1563–1599. [Google Scholar]
- H. Hajri and W. Touhami, Ito’s formula for Walsh’s Brownian motion and applications. Stat. Probab. Lett. 87 (2014) 48–53. [CrossRef] [Google Scholar]
- J.M. Harrison and L.A. Shepp, On skew Brownian motion. Ann. Probab. 9 (1981) 309–313. [Google Scholar]
- A. Iksanov and A. Pilipenko, A functional limit theorem for locally perturbed random walks. Probab. Math. Stat. 36 (2016) 353–368. [Google Scholar]
- A. Iksanov, A. Pilipenko and B. Povar, Functional limit theorems for random walks perturbed by positive alpha-stable jumps. To appear in Bernoulli (2021). [Google Scholar]
- J. Jacod and A.N. Shiryaev, Limit theorems for stochastic processes. Vol. 288 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2003), second edition. [CrossRef] [Google Scholar]
- O. Kallenberg, Foundations of Modern Probability. Probability and its Applications. Springer, New York (2002), second edition. [Google Scholar]
- I. Karatzas and M. Yan, Semimartingales on rays, Walsh diffusions, and related problems of control and stopping. Stoch. Process. Appl. 129 (2019) 1921–1963. [CrossRef] [Google Scholar]
- J. Keilson and J.A. Wellner, Oscillating Brownian motion. J. Appl. Probab. 15 (1978) 300–310. [Google Scholar]
- A. Lejay, On the constructions of the skew Brownian motion. Probab. Surv. 3 (2006) 413–466. [CrossRef] [MathSciNet] [Google Scholar]
- A. Lejay, The snapping out Brownian motion. Ann. Appl. Probab. 26 (2016) 1727–1742. [CrossRef] [MathSciNet] [Google Scholar]
- V. Mandrekar and A. Pilipenko, On a Brownian motion with a hard membrane. Stat. Probab. Lett. 113 (2016) 62–70. [CrossRef] [Google Scholar]
- R.A. Minlos and E.A. Zhizhina, Limit diffusion process for a non-homogeneous random walk on a one-dimensional lattice. Russ. Math. Surv. 52 (1997) 327–340. [CrossRef] [Google Scholar]
- N. Moutal and D. Grebenkov, Diffusion across semi-permeable barriers: spectral properties, efficient computation, and applications. J. Sci. Comput. 81 (2019) 1630–1654. [CrossRef] [MathSciNet] [Google Scholar]
- S. Nakao, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations. Osaka J. Math. 9 (1972) 513–518. [MathSciNet] [Google Scholar]
- H.-L. Ngo and M. Peignée, Limit theorem for perturbed random walks. Theory Stoch. Process. 24 (2019) 61–78. [MathSciNet] [Google Scholar]
- D.S. Novikov, E. Fieremans, J.H. Jensen and J.A. Helpern, Random walks with barriers. Nat. Phys. 7 (2011) 508–514. [CrossRef] [PubMed] [Google Scholar]
- D. Paulin and D. Szász, Locally perturbed random walks with unbounded jumps. J. Stat. Phys. 141 (2010) 1116–1130. [CrossRef] [MathSciNet] [Google Scholar]
- V.V. Petrov, Sums of Independent Random Variables, vol. 82 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York (1975). [Google Scholar]
- A. Pilipenko, An Introduction to Stochastic Differential Equations with Reflection, vol. 11 of Lectures in Pure and Applied Mathematics. Potsdam University Press, Potsdam (2014). [Google Scholar]
- A. Pilipenko, A functional limit theorem for excited random walks. Electr. Commun. Prob. 22 (2017) 1–9. [Google Scholar]
- A. Pilipenko and Y. Pryhod’ko, Limit behavior of symmetric random walks with a membrane. Theory Probab. Math. Stat. 85 (2012) 93–105. [Google Scholar]
- A.Y. Pilipenko and L.A. Sakhanenko, On a limit behavior of a one-dimensional random walk with non-integrable impurity. Theory Stoch. Process. 20 (2015) 97–104. [MathSciNet] [Google Scholar]
- A.Y. Pilipenko and V. Khomenko, On a limit behavior of a random walk with modifications upon each visit to zero. Theory Stoch. Process. 22 (2017) 71–80. [MathSciNet] [Google Scholar]
- A.Y. Pilipenko and Y. E. Prikhod’ko, On the limit behavior of a sequence of Markov processes perturbed in a neighborhood of the singular point. Ukrainian Math. J. 67 (2015) 564–583. [CrossRef] [MathSciNet] [Google Scholar]
- A.Y. Pilipenko and Y. E. Prykhodko, Limit behavior of a simple random walk with non-integrable jump from a barrier. Theory Stoch. Process. 19 (2014) 52–61. [MathSciNet] [Google Scholar]
- N.I. Portenko, Generalized diffusion processes. Vol. 83 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1990). [Google Scholar]
- D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Vol. 293 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, corrected third printing of the third edition (2005). [Google Scholar]
- D. Szász and A. Telcs, Random walk in an inhomogeneous medium with local impurities. J. Stat. Phys. 26 (1981) 527–537. [CrossRef] [Google Scholar]
- J.B. Walsh, A diffusion with a discontinuous local time. Astérisque 52 (1978) 37–45. [Google Scholar]
- D.A. Yarotskii, Central limit theorem for a class of nonhomogeneous random walks. Math. Notes 69 (2001) 690–695. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.