Open Access
Issue |
ESAIM: PS
Volume 26, 2022
Fractional Dynamics in Natural Phenomena
|
|
---|---|---|
Page(s) | 304 - 351 | |
DOI | https://doi.org/10.1051/ps/2022008 | |
Published online | 12 August 2022 |
- A. Agarwal and E. Gobet, Finite variance unbiased estimation of stochastic differential equations. Proceedings of the 2017 Winter Simulation Conference (2017) 1950–1961. [CrossRef] [Google Scholar]
- P. Andersson and A. Kohatsu-Higa, Unbiased simulation of stochastic differential equations using parametrix expansions. Bernoulli 23 (2017) 2028–2057. [CrossRef] [MathSciNet] [Google Scholar]
- V. Bally and A. Kohatsu-Higa, A probabilistic interpretation of the parametrix method. Ann. Appl. Probab. 25 (2015) 3095–3138. [CrossRef] [MathSciNet] [Google Scholar]
- G. Bernis, E. Gobet and A. Kohatsu-Higa, Monte Carlo evaluation of Greeks for multidimensional barrier and lookback options. Applications of Malliavin Calculus in Finance (Rocquencourt, 2001). Math. Finance 13 (2003) 99–113. [CrossRef] [MathSciNet] [Google Scholar]
- F. Delarue, Estimates of the Solutions of a System of Quasi-linear PDEs. A Probabilistic Scheme. Springer Berlin Heidelberg, Berlin, Heidelberg (2003) 290–332. [Google Scholar]
- M. Doumbia, N. Oudjane and X. Warin, Unbiased Monte Carlo estimate of stochastic differential equations expectations. ESAIM: PS 21 (2017) 56–87. [CrossRef] [EDP Sciences] [Google Scholar]
- E. Fournié, J.-M. Lasry, J. Lebuchoux and P.-L. Lions, Applications of Malliavin calculus to Monte-Carlo methods in finance. II. Finance Stoch. 5 (2001) 201–236. [CrossRef] [MathSciNet] [Google Scholar]
- E. Fournié, J.-M. Lasry, J. Lebuchoux, P.-L. Lions and N. Touzi, Applications of Malliavin calculus to Monte Carlo methods in finance. Finance Stoch. 3 (1999) 391–412. [CrossRef] [MathSciNet] [Google Scholar]
- N. Frikha, A. Kohatsu-Higa and L. Li, Integration by parts formula for killed processes: a point of view from approximation theory. Electr. J. Probab. 24 (2019) 1–44. [Google Scholar]
- E. Gobet, Revisiting the Greeks for European and American Options, Stochastic Processes and Applications to Mathematical Finance (2004) 53–71. 10.1142/9789812702852_0003 [CrossRef] [Google Scholar]
- E. Gobet and A. Kohatsu-Higa, Computation of Greeks for barrier and look-back options using Malliavin calculus. Electr. Comm. Probab. 8 (2003) 51–62. [Google Scholar]
- P. Henry-Labordère, X. Tan and N. Touzi, Unbiased simulation of stochastic differential equations. Ann. Appl. Probab. 27 (2017) 3305–3341. [MathSciNet] [Google Scholar]
- S. Kusuoka and D. Stroock, Applications of the Malliavin Calculus, Part I, in K. Itô (editor), Stochastic Analysis. vol. 32 of North-Holland Mathematical Library. Elsevier (1984) 271–306. [Google Scholar]
- S. Kusuoka and D. Stroock, Applications of the Malliavin calculus, Part II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985) 1–76. [MathSciNet] [Google Scholar]
- S. Kusuoka and D. Stroock, Applications of the Malliavin calculus, Part III. J. Faculty Sci. Univ. Tokyo. Section IA. Math. 34 (1987) 391–442. [MathSciNet] [Google Scholar]
- P. Malliavin and A. Thalmaier, Stochastic Calculus of Variations in Mathematical Finance. Springer Finance, Springer Berlin Heidelberg (2005). [Google Scholar]
- D. Nualart, The Malliavin calculus and related topics, Probability and its Applications (New York), 2nd edn., Springer-Verlag, Berlin (2006). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.