Open Access
Volume 26, 2022
Page(s) 283 - 303
Published online 16 June 2022
  1. M. Aldridge, O. Johnson and J. Scarlett, Group testing: an information theory perspective. Found. Trends Commun. Inf. Theory 15 (2019) 196–392. [CrossRef] [Google Scholar]
  2. H. Aprahamian, D.R. Bish and E.K Bish, Optimal risk-based group testing. Manag. Sci. 65 (2019) 4365–4384. [CrossRef] [Google Scholar]
  3. R. Ben-Ami, A. Klochendler, M. Seidel, T. Sido, O. Gurel-Gurevich, M. Yassour, E. Meshorer, G. Benedek, I. Fogel, E. Oiknine-Djian, A. Gertler, Z. Rotstein, B. Lavi, Y. Dor, D.G Wolf, M. Salton and Y. Drier, Large-scale implementation of pooled RNA-extraction and RT-PCR for SARS-CoV-2 detection. Preprint medRxiv (2020). [Google Scholar]
  4. M. Beunardeau, E. Brier, N. Cartier, A. Connolly, N. Courant, R. Geraud-Stewart, D. Naccache and O. Yifrach-Stav, Optimal Covid-19 Pool Testing with a priori Information. Preprint arXiv:2005.02940 (2020). [Google Scholar]
  5. V. Brault, B. Mallein and J.-F. Rupprecht, Group testing as a strategy for the epidemiologic monitoring of COVID-19. Preprint arXiv:2005.06776 (2020). [Google Scholar]
  6. J.J. Cabrera, S. Rey, S. Perez, L. Martinez-Lamas, O. Cores-Calvo, J. Torres, J. Porteiro, J. Garcia-Comesana and B.J. Regueiro, Pooling for SARS-COV-2 control in care institutions. Preprint medRxiv (2020). [Google Scholar]
  7. S. Cai, M. Jahangoshahi, M. Bakshi and S. Jaggi, Efficient algorithms for noisy group testing. IEEE Trans. Inf. Theory 63 (2017) 2113–2136. [CrossRef] [Google Scholar]
  8. M.A. Chateauneuf, C.J. Colbourn, D.L. Kreher, E.R. Lamken and D.C. Torney, Pooling, lattice square, and union jack designs. Ann. Combinat. 3 (1999) 27–35. [CrossRef] [Google Scholar]
  9. R. Dorfman, The detection of defective members of large populations. Ann. Math. Stat. 14 (1943) 436–440. [CrossRef] [Google Scholar]
  10. D.-Z. Du and F.K. Hwang, Combinatorial group testing and its applications. 2nd ed. World Scientific, Singapore 2nd ed. (2000). [Google Scholar]
  11. A. Emad and O. Milenkovic, Code construction and decoding algorithms for semi-quantitative group testing with nonuniform thresholds. IEEE Trans. Inf. Theory 62 (2016) 1674–1687. [CrossRef] [MathSciNet] [Google Scholar]
  12. S.R. Fereidouni, T.C. Harder, N. Gaidet, M. Ziller, B. Hoffmann, S. Hammoumi, A. Globig and E. Starick, Saving resources: Avian influenza surveillance using pooled swab samples and reduced reaction volumes in real-time RT-PCR. J. Virolog. Methods 186 (2012) 119–125. [CrossRef] [Google Scholar]
  13. T. Furon, The illusion of group testing. Research Report RR-9164, Inria Rennes Bretagne Atlantique (2018). [Google Scholar]
  14. S. Ghosh, A. Rajwade, S. Krishna, N. Gopalkrishnan, T.E. Schaus, A. Chakravarthy, S. Varahan, V. Appu, R. Ramakrishnan, M. Jindal, V. Bhupathi, A. Gupta, A. Jain, R. Agarwal, S. Pathak, M. Ali Rehan, S. Consul, Y. Gupta, N. Gupta, P. Agarwal, R. Goyal, V. Sagar, U. Ramakrishnan, S. Krishna, P. Yin, D. Palakodeti and M. Gopalkrishnan, Tapestry: a single-round smart pooling technique for COVID-19 testing. Preprint medRxiv (2020). [Google Scholar]
  15. C. Gollier and O. Gossner, Group testing against Covid-19. Covid Econ. 2 (2020) 32–42. [Google Scholar]
  16. C.A. Hogan, M.K. Sahoo and B.A. Pinsky, Sample pooling as a strategy to detect community transmission of SARS-CoV-2. JAMA 323 (2020) 1967. [CrossRef] [PubMed] [Google Scholar]
  17. F.K. Hwang and Y.H. Xu, Group testing to identify one defective and one mediocre item. J. Stat. Plann. Inference 17 (1987) 367–373. [CrossRef] [Google Scholar]
  18. H.A. Inan, P. Kairouz, M. Wootters and A. Ozgur, On the Optimality of the Kautz-Singleton Construction in Probabilistic Group Testing (2018). [Google Scholar]
  19. T.C. Jones, B. Mühlemann, T. Veith, G. Biele, M. Zuchowski, J. Hoffmann, A. Stein, A. Edelmann, V. Max Corman and C. Drosten, An analysis of SARS-CoV-2 viral load by patient age. Preprint medRxiv (2020). [Google Scholar]
  20. M. Lipsitch, D.L. Swerdlow and L. Finelli, Sample pooling as a strategy to detect community transmission of SARS-CoV-2. N. Engl. J. Med. 382 (2020) 1194–1196. [CrossRef] [PubMed] [Google Scholar]
  21. S. Lohse, T. Pfuhl, B. Berko-Gottel, J. Rissland, T. Geißler, B. Gärtner, S.L. Becker, S. Schneitler and S. Smola, Pooling of samples for testing for SARS-CoV-2 in asymptomatic people. Lancet Infect. Diseases 3099 (2020) 1231–1232. [CrossRef] [Google Scholar]
  22. M. Mézard and C. Toninelli, Group testing with random pools: optimal two-stage algorithms. IEEE Trans. Inf. Theory 57 (2011) 1736–1745. [CrossRef] [Google Scholar]
  23. M. Méezard, M. Tarzia and C. Toninelli, Group testing with random pools: Phase transitions and optimal strategy. J. Stat. Phys. 131 (2008) 783–801. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Mutesa, P. Ndishimye, Y. Butera, A. Uwineza, R. Rutayisire, E. Musoni, N. Rujeni, T. Nyatanyi, E. Ntagwabira, M. Semakula, C. Musanabaganwa, D. Nyamwasa, M. Ndashimye, E. Ujeneza, I.E. Mwikarago, C.M. Muvunyi, J.B. Mazarati, S. Nsanzimana, N. Turok and W. Ndifon, A strategy for finding people infected with SARS-CoV-2: optimizing pooled testing at low prevalence. Preprint arXiv (2020). DOI: 10.1101/2020.05.02.20087924 [Google Scholar]
  25. H. Shani-Narkiss, O.D. Gilday, N. Yayon and I.D. Landau, Efficient and practical sample pooling for high-throughput PCR diagnosis of COVID-19. Preprint medRxiv (2020). [Google Scholar]
  26. N. Sinnott-Armstrong, D. Klein and B. Hickey, Evaluation of group testing for SARS-CoV-2 RNA. Preprint medRxiv (2020). [Google Scholar]
  27. M. Taufer, Rapid, large-scale, and effective detection of COVID-19 via non-adaptive testing. J. Theor. Biol. 506 (2020) 110450. [CrossRef] [Google Scholar]
  28. N. Thierry-Mieg, Pooling in systems biology becomes smart. Nat. Methods 3 (2006) 161–162. [CrossRef] [PubMed] [Google Scholar]
  29. K.H. Thompson, Estimation of the proportion of vectors in a natural population of insects. Biometrics 18 (1962) 568. [CrossRef] [Google Scholar]
  30. I. Torres, E. Albert and D. Navarro, Pooling of nasopharyngeal swab specimens for SARS-CoV-2 detection by RT-PCR. J. Med. Virol. (2020) 25971. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.