Free Access
Issue
ESAIM: PS
Volume 20, 2016
Page(s) 555 - 571
DOI https://doi.org/10.1051/ps/2016025
Published online 07 December 2016
  1. V.S. Barbu and N. Limnios, Semi-Markov chains and hidden semi-Markov models toward applications – their use in reliability and DNA analysis. Vol. 191 of Lect. Notes Stat. Springer, New York (2008). [Google Scholar]
  2. D.J. Bartholomew, Stochastic models for social processes. Wiley, London, 3rd edition (1982). [Google Scholar]
  3. D.J. Bartholomew, A.F. Forbes and S.I. McClean, Statistical Techniques For Manpower Planning. Wiley, London, 2nd edition (1991). [Google Scholar]
  4. A. Charnes, W.W. Cooper, R.J. Niehaus and D. Sholtz, Multilevel models for career management and resource planning. Proc. of NATO Conference Manpower Planning Models. Cambridge, September (1971). [Google Scholar]
  5. G. D’Amico, J. Janssen and R. Manca, Duration dependent semi-Markov models. Appl. Math. Sci. 5 (2011) 2097–2108. [MathSciNet] [Google Scholar]
  6. G. D’Amico, G. Di Biase, F. Gismondi and R. Manca, The evaluation of generalized Bernoulli processes for salary lines construction by means of continuous time generalized non-homogeneous semi-Markov processes. Commun. Statis. – Theory and Methods 42 (2013) 2889–2901. [CrossRef] [Google Scholar]
  7. T. De Feyter, Modelling heterogeneity in manpower planning: dividing the personnel system into more homogeneous subgroups. Appl. Stoch. Models Bus. Ind. 22 (2006) 321–334. [Google Scholar]
  8. T. De Feyter and M. Guerry, Evaluating recruitment strategies using fuzzy set theory in stochastic manpower planning. Stoch. Anal. Appl. 27 (2009) 1148–1162. [Google Scholar]
  9. V.A. Dimitriou and N. Tsantas, Evolution of a time dependent Markov Model for training and recruitment decisions in manpower planning. Linear Algebra and its Applications 433 (2010) 1950–1972. [MathSciNet] [Google Scholar]
  10. V.A. Dimitriou and N. Tsantas, The augmented semi-Markov system in continuous time, Commun. Stat.: Theory Methods 41 (2012) 88–107. [CrossRef] [Google Scholar]
  11. A.T. Ernst, H. Jiang, M. Krishnamoorthy and D. Sier, Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153 (2004) 3–27. [Google Scholar]
  12. A.C. Georgiou and N. Tsantas, Modelling recruitment training in mathematical human resource planning. Appl. Stoch. Models Bus. Ind. 18 (2002) 53–74. [MathSciNet] [Google Scholar]
  13. F. Gismondi, R. Manca and A.V. Swishchuk, Salary lines forecasting by means of generalized binomial processes, Int. J. Manag. Sci. Eng. Manag. 4 (2010) 309–320. [Google Scholar]
  14. M.A. Guerry, On the evolution of stock vectors in a deterministic integer-valued Markov system. Linear Algebra Appl. 429 (2008) 1944–1953. [MathSciNet] [Google Scholar]
  15. J. Janssen and R. Manca, Salary cost evaluation by means of non-homogeneous semi-Markov processes. Stoch. Models 18 (2002) 7–23. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Janssen and R. Manca, Applied Semi-Markov Processes. Springer, New York (2006). [Google Scholar]
  17. J. Janssen and R. Manca, Semi-Markov risk models for finance, insurance and reliability. Springer, New York (2007). [Google Scholar]
  18. J. Janssen, R. Manca and E. Volpe di Prignano, Semi-Markov modelization for salary line evolution. Proc. of the VIII Applied Stochastic Models and Data Analysis, edited by J. Janssen and N.C. Lauro. Anacapri (Napoli), Italy, Napoli (1997). [Google Scholar]
  19. M. Karaliopoulou, On the number of word occurrences in a semi-Markov sequence of letters. ESAIM: PS 13 (2009) 328–342. [CrossRef] [EDP Sciences] [Google Scholar]
  20. G.L. Lilien and A. Rao, A model for man-power management. Manage. Sci. 21 (1975) 1447–1457. [Google Scholar]
  21. N. Limnios and G. Oprişan, Semi-Markov processes and reliability. Birkhäuser, Boston (2001). [Google Scholar]
  22. S.I. McClean, A semi-Markov model for a multigrade population with Poisson recruitment. J. Appl. Probab. 17 (1980) 846–852. [MathSciNet] [Google Scholar]
  23. S.I. McClean, Semi-Markov models for manpower planning, In Semi-Markov models: theory and applications, edited by J. Janssen. Plenum (1986). [Google Scholar]
  24. S.I. McClean, Semi-Markov models for human resource modelling. IMA J. Manage. Math. 4 (1992) 307–315. [CrossRef] [Google Scholar]
  25. S.I. McClean and O. Gribbin, A non-parametric competing risk model for man power planning. Appl. Stoch. Models Data Anal. 7 (1991) 327–341. [CrossRef] [Google Scholar]
  26. S.I. McClean and E. Montgomery, Estimation for semi-Markov manpower models in a stochastic environment. In Semi-Markov models and applications, edited by J. Janssen and N. Limnios. Kluwer (2000). [Google Scholar]
  27. S.I. McClean, E. Montgomery and F. Ugwuowo, Non-homogeneous continuous-time Markov and semi-Markov manpower models. Appl. Stoch. Models Data Anal. 13 (1998) 191–198. [CrossRef] [Google Scholar]
  28. A.A. Papadopolou and P.-C.G. Vassiliou, Non-homogeneous semi-Markov systems and mantainability of the state sizes. J. Appl. Probab. 29 (1992) 519–534. [MathSciNet] [Google Scholar]
  29. A.A. Papadopoulou and P.-C.G. Vassiliou, Asymptotic behaviour of non-homogeneous semi-Markov systems. Linear Algebra Appl. 210 (1994) 153–198. [MathSciNet] [Google Scholar]
  30. A.A. Papadopoulou and P.-C.G. Vassiliou, Continuous time non-homogeneous semi-Markov systems. In Semi-Markov Models and Applications, edited by J. Janssen and N. Limnios. Kluver Academic Publishing (1999) 241–251. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.