Free Access
Volume 20, 2016
Page(s) 527 - 554
Published online 07 December 2016
  1. L. Arnold and W. Kliemann, On unique ergodicity for degenerate diffusions. Stochastics 21 (1987) 41–61. [CrossRef] [MathSciNet] [Google Scholar]
  2. J. Azéma, M. Duflo and D. Revuz, Mesures invariantes des processus de Markov récurrents. Séminaire de Probabilités III. In vol. 88 of Lect. Notes Math. Springer (1969). [Google Scholar]
  3. R. Bass, Diffusions and elliptic operators. Springer (1998). [Google Scholar]
  4. P. Brémaud, Introduction aux Probabilités. Springer (1984). [Google Scholar]
  5. Y. Chow and H. Teicher, Probability theory. 2nd Edition Springer (1988). [Google Scholar]
  6. S. Ditlevsen and P. Lansky, Estimation of the input parameters in the Feller neuronal model. Phys. Rev. E 73 (2006) 061910. [Google Scholar]
  7. H. Doss and P. Priouret, Support d’un processus de reflexion. Z. Wahrscheinlichkeitstheorie verw. Geb. 61 (1982) 3278–345. [CrossRef] [Google Scholar]
  8. K. Endler, Periodicities in the HodgkinHuxley model and versions of this model with stochastic input. Master Thesis, Institute of Mathematics, University of Mainz (2012). Available at˙opus=3083&la=de (2016). [Google Scholar]
  9. M. Hairer, On Malliavin’s proof of Hörmander’s theorem. Bull. Sci. Math. 135 (2011) 650–666. [CrossRef] [MathSciNet] [Google Scholar]
  10. T. Harris, The existence of stationary measures for certain Markov processes. Proc. of 3rd Berkeley Symp. II (1956) 113–124. [Google Scholar]
  11. A. Hodgkin and A. Huxley, A quantitative description of ion currents and its applications to conduction and excitation in nerve embranes. J. Physiol. 117 (1951) 500–544. [Google Scholar]
  12. R. Höpfner, On a set of data for the membrane potential in a neuron. Math. Biosci. 207 (2007) 275–301. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. R. Höpfner, E. Löcherbach and M. Thieullen, Strongly degenerate time inhomogenous SDEs: densities and support properties. Application to Hodgkin−Huxley type systems. Preprint arXiv:1410.0341 (2014). To appear in Bernoulli (2017). [Google Scholar]
  14. R. Höpfner, E. Löcherbach and M. Thieullen, Ergodicity for a stochastic Hodgkin−Huxley model driven by Ornstein−Uhlenbeck type input. Ann. Inst. Henri Poincaré 52 (2016) 483–501. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Höpfner and Yu. Kutoyants, Estimating discontinuous periodic signals in a time inhomogeneous diffusion. Statist. Inference Stoch. Proc. 13 (2010) 193–230. [CrossRef] [Google Scholar]
  16. K. Ichihara and H. Kunita, A Classification of the Second Order Degenerate Elliptic Operators and its Probabilistic Characterization. Z. Wahrscheinlichkeitsth. verw. Geb. 30 (1974) 235–254. [CrossRef] [Google Scholar]
  17. E. Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press (2007). [Google Scholar]
  18. H. Kunita, Stochastic flows and stochastic differential equations. Cambridge Univ. Press (1990). [Google Scholar]
  19. P. Lansky, L. Sacerdote and F. Tomassetti, On the comparison of Feller and Ornstein−Uhlenbeck models for neuronal activity. Biol. Cybern. 73 (1995) 457–465. [CrossRef] [PubMed] [Google Scholar]
  20. J. Mattingly, A. Stuart and D. Highham, Ergodicity of SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Proc. Appl. 101 (2002) 185–232. [CrossRef] [MathSciNet] [Google Scholar]
  21. S. Meyn and R. Tweedie, Stability of Markovian processes I: criteria for discrete-time chains. Adv. Appl. Probab. 24 (1992) 542–574. [Google Scholar]
  22. S. Meyn and R. Tweedie, Stochastic stablity of Markov chains. Springer (1993). [Google Scholar]
  23. A. Millet and M. Sanz-Solé, A simple proof of the support theorem for diffusion processes. Séminaire de Probabilités, Strasbourg, tome 28 (1994) 26–48. [Google Scholar]
  24. E. Nummelin, A splitting technique for Harris recurrent Markov chains. Zeitschr. Wahrscheinlichkeitstheorie Verw. Geb. 43 (1978) 309–318. [Google Scholar]
  25. E. Nummelin, General irreducible Markov chains and non-negative operators. Cambridge University Press (1985). [Google Scholar]
  26. F. Petit, Théorème de support pour les diffusions réfléchis de type Ventcell. Ann. Inst. Henri Poincaré 32 (1996) 135–210. [Google Scholar]
  27. D. Revuz, Markov chains. Rev. Edition. Springer (1984). [Google Scholar]
  28. J. Rinzel and R. Miller, Numerical calculation of stable and unstable periodic solutions to the Hodgkin−Huxley equations. Math. Biosci. 49 (1980) 27–59. [Google Scholar]
  29. D. Strook and S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle. Proc. of 6th Berkeley Symp. Math. Stat. Prob. III (1972) 333–359. [Google Scholar]
  30. H. Sussmann, Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180 (1973) 171–188. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.