Free Access
Issue |
ESAIM: PS
Volume 20, 2016
|
|
---|---|---|
Page(s) | 572 - 589 | |
DOI | https://doi.org/10.1051/ps/2016023 | |
Published online | 21 December 2016 |
- G.P. Agrawal, Nonlinear Fiber Optics, 3rd edition. Academic Press, San Diego (2001). [Google Scholar]
- G. Bal and L. Ryzhik, Time splitting for wave equations in random media. ESAIM: M2AN 38 (2004) 961–988 [CrossRef] [EDP Sciences] [Google Scholar]
- G. Bal and L. Ryzhik, Time splitting for the Liouville equation in a random medium. Commun. Math. Sci. 2 (2004) 515–534. [CrossRef] [MathSciNet] [Google Scholar]
- W. Bao, S. Jin and P.A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175 (2002) 487–524. [CrossRef] [MathSciNet] [Google Scholar]
- A. Benassi, S. Jaffard and D. Roux, Gaussian processes and Pseudodifferential Elliptic operators. Rev. Math. Iberoam. 13 (1997) 19–89. [Google Scholar]
- C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26–40. [CrossRef] [MathSciNet] [Google Scholar]
- C. Besse, R. Carles and F. Mehats, An asymptotic preserving scheme based on a new formulation for NLS in the semiclassical limit. Multiscale Model. Simul. 11 (2013) 1228–1260. [CrossRef] [MathSciNet] [Google Scholar]
- P. Billingsley, Convergence of Probability Measures. Wiley (1968). [Google Scholar]
- S. Cohen and R. Marty, Invariance principle, multifractional Gaussian processes and long-range dependence. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 475–489. [CrossRef] [MathSciNet] [Google Scholar]
- F. Coron and B. Perthame, Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28 (1991) 26–42. [CrossRef] [MathSciNet] [Google Scholar]
- A. De Bouard and A. Debussche, The nonlinear Schrodinger equation with white noise dispersion. J. Functional Anal. 259 (2010) 1300–1321. [CrossRef] [Google Scholar]
- A. Debussche and Y. Tsutsumi, 1D quintic nonlinear equation with white noise dispersion. J. Math. Pures Appl. 96 (2011) 363–376. [CrossRef] [MathSciNet] [Google Scholar]
- P. Degond, Asymptotic-Preserving Schemes for Fluid Models of Plasmas. Panoramas et Synthèses 39-40 (2013) 1–90. [Google Scholar]
- R.L. Dobrushin. Gaussian and their Subordinated Self-Similar Random Generalized Fields. Ann. Probab. 7 (1979) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
- R.L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27–52. [CrossRef] [MathSciNet] [Google Scholar]
- P. Donnat, Quelques contributions mathématiques à l’optique non-linéaire. Ph.D. thesis, École Polytechnique (1993). [Google Scholar]
- S.N. Ethier and T.G. Kurtz, Markov processes, characterization and convergence. Wiley, New York (1986). [Google Scholar]
- J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Solna, Wave Propagation and Time Reversal in Randomly Layered Media. Springer (2007). [Google Scholar]
- E. Gabetta, L. Pareschi and G. Toscani, Relaxation schemes for nonlinear kinetic equations SIAM J. Numer. Anal. 34 (1997) 2168–2194. [CrossRef] [MathSciNet] [Google Scholar]
- J. Garnier and K. Solna, Pulse propagation in random media with long range correlation. Multiscale Model. Simul. 7 (2009) 1302–1324. [CrossRef] [Google Scholar]
- C. Gomez and O. Pinaud. Asymptotics of a time-splitting scheme for the random Schrödinger equation with long-range correlations. Math. Model. Numer. Anal. 48 (2014) 411–431. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- K. Itô. Multiple Wiener integral. J. Math. Soc. Jpn 3 (1951) 157–169 [Google Scholar]
- S. Jin, Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations. SIAM J. Sci. Comput. 21 (1999) 441–454. [CrossRef] [MathSciNet] [Google Scholar]
- S. Jin, P. Markowich and C. Sparber, Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20 (2011) 121–209. [CrossRef] [MathSciNet] [Google Scholar]
- A. Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35 (1998) 1073–1094. [CrossRef] [MathSciNet] [Google Scholar]
- R. Marty, Asymptotic behavior of differential equations driven by periodic and random processes with slowly decaying correlations. ESAIM: PS 9 (2005) 165–184. [CrossRef] [EDP Sciences] [Google Scholar]
- R. Marty, On a splitting scheme for the nonlinear Schrödinger equation in a random medium. Commun. Math. Sci. 4 (2006) 679–705. [CrossRef] [MathSciNet] [Google Scholar]
- R. Marty, From Hermite polynomials to multifractional processes. J. Appl. Prob. 50 (2013) 323–343. [CrossRef] [Google Scholar]
- R. Marty and K. Solna, A general framework for waves in random media with long-range correlations. Ann. Appl. Probab. 21 (2011) 115–139. [CrossRef] [MathSciNet] [Google Scholar]
- R.F. Peltier and J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results. preprint available at http://hal.inria.fr/inria-00074045/ (1995). [Google Scholar]
- G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian random processes. Chapman and Hall (1994). [Google Scholar]
- G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506–517. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- M.S. Taqqu. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete. 31 (1975) 287–302. [CrossRef] [Google Scholar]
- M.S. Taqqu. Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 (1979) 53–83. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.