Free Access
Issue |
ESAIM: PS
Volume 20, 2016
|
|
---|---|---|
Page(s) | 143 - 153 | |
DOI | https://doi.org/10.1051/ps/2016008 | |
Published online | 14 July 2016 |
- S.A. van de Geer, Applications of Empirical Process Theory. Vol. 6 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2000). [Google Scholar]
- V. Genon-Catalot, C. Laredo and D. Picard, Nonparametric estimation of the diffusion coefficient by wavelets methods. Scand. J. Statist. 19 (1992) 317–335. [MathSciNet] [Google Scholar]
- S. Ghosal, J.K. Ghosh and A.W. van der Vaart, Convergence rates of posterior distributions. Ann. Statist. 28 (2000) 500–531. [CrossRef] [MathSciNet] [Google Scholar]
- S. Ghosal and A.W. van der Vaart, Convergence rates of posterior distributions for non-i.i.d. observations. Ann. Statist. 35 (2007) 192–223. [CrossRef] [MathSciNet] [Google Scholar]
- S. Ghosal, J.K. Ghosh and R.V. Ramamoorthi, Non-informative priors via sieves and packing numbers. Advances in Statistical Decision Theory and Applications, Stat. Ind. Technol. Birkhäuser Boston, Boston, MA (1997) 119–132. [Google Scholar]
- S. Ghosal, J.K. Ghosh and R.V. Ramamoorthi, Consistency issues in Bayesian nonparametrics. Asymptotics, Nonparametrics, and Time Series. Vol. 158 of Statist. Textbooks Monogr. Dekker, New York (1999) 639–667. [Google Scholar]
- S. Gugushvili and P. Spreij, Non-parametric Bayesian estimation of a dispersion coefficient of the stochastic differential equation. ESAIM: PS 18 (2014) 332–341. [CrossRef] [EDP Sciences] [Google Scholar]
- M. Hoffmann, Minimax estimation of the diffusion coefficient through irregular samplings. Statist. Probab. Lett. 32 (1997) 11–24. [CrossRef] [MathSciNet] [Google Scholar]
- I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Vol. 113 of Graduate Texts in Mathematics. Springer-Verlag, New York (1988). [Google Scholar]
- B. Kleijn and A.W. van der Vaart, Misspecification in infinite-dimensional Bayesian statistics, Ann. Statist. 34 (2006) 837–877. [CrossRef] [MathSciNet] [Google Scholar]
- R. Nickl and J. Söhl, Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. Preprint arXiv:1510.05526 [math.ST] (2015). [Google Scholar]
- C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA (2006). [Google Scholar]
- X. Shen and L. Wasserman, Rates of convergence of posterior distributions. Ann. Statist. 29 (2001) 687–714. [CrossRef] [MathSciNet] [Google Scholar]
- P. Soulier, Nonparametric estimation of the diffusion coefficient of a diffusion process. Stochastic Anal. Appl. 16 (1998) 185–200. [CrossRef] [MathSciNet] [Google Scholar]
- A.B. Tsybakov, Introduction to Nonparametric Estimation. Springer Series in Statistics. Revised and extended from the 2004 French original. Translated by Vladimir Zaiats. Springer, New York (2009). [Google Scholar]
- A.W. van der Vaart and J.H. van Zanten, Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36 (2008) 1435–1463. [CrossRef] [MathSciNet] [Google Scholar]
- J. van Waaij and H. van Zanten, Gaussian process methods for one-dimensional diffusions: optimal rates and adaptation. Preprint arXiv:1506.00515 [math.ST] (2015). [Google Scholar]
- L. Wasserman, Asymptotic properties of nonparametric Bayesian procedures. In Practical Nonparametric and Semiparametric Bayesian Statistics. Vol. 133 of Lect. Notes Stat. Springer, New York (1998) 293–304. [Google Scholar]
- W.H. Wong and X. Shen, Probability inequalities for likelihood ratios and convergence rates of sieve MLEs. Ann. Statist. 23 (1995) 339–362. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.