Free Access
Issue |
ESAIM: PS
Volume 20, 2016
|
|
---|---|---|
Page(s) | 154 - 177 | |
DOI | https://doi.org/10.1051/ps/2016009 | |
Published online | 14 July 2016 |
- R.F. Bass, Uniqueness in law for pure jump Markov processes. Probab. Theory Related Fields 79 (1988) 271–287. [CrossRef] [MathSciNet] [Google Scholar]
- R.F. Bass and M. Cranston, The Malliavin calculus for pure jump processes and applications to local time. Ann. Probab. 14 (1986) 490–532. [CrossRef] [MathSciNet] [Google Scholar]
- R.N. Bhattacharya, Criteria for recurrence and existence of invariant measures for multidimensional diffusions. Ann. Probab. 6 (1978) 541–553. [CrossRef] [MathSciNet] [Google Scholar]
- R.N. Bhattacharya, Correction to: “Criteria for recurrence and existence of invariant measures for multidimensional diffusions” [Ann. Probab. 6 (1978) 541–553]. Ann. Probab. 8 (1980) 1194–1195. [CrossRef] [MathSciNet] [Google Scholar]
- R.N. Bhattacharya, On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrsch. Verw. Gebiete 60 (1982) 185–201. [CrossRef] [MathSciNet] [Google Scholar]
- B. Böttcher, An overshoot approach to recurrence and transience of Markov processes. Stochastic Process. Appl. 121 (2011) 1962–1981. [CrossRef] [MathSciNet] [Google Scholar]
- B. Böttcher, R.L. Schilling and J. Wang, Lévy matters. III. Springer, Cham (2013). [Google Scholar]
- R.C. Bradley, Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 (2005) 107–144. [CrossRef] [MathSciNet] [Google Scholar]
- P. Courrége, Sur la forme intégro-différentielle des opérateus de CK∞ dans C satisfaisant au principe du maximum. Sém. Théorie du Potentiel, exposé 2 (1965–1966) 38. [Google Scholar]
- Ju.A. Davydov, Mixing conditions for Markov chains. Teor. Verojatnost. i Primenen. 18 (1973) 321–338. [MathSciNet] [Google Scholar]
- R. Douc, G. Fort and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes. Stochastic Process. Appl. 119 (2009) 897–923. [CrossRef] [MathSciNet] [Google Scholar]
- D. Down, S.P. Meyn and R.L. Tweedie, Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23 (1995) 1671–1691. [CrossRef] [MathSciNet] [Google Scholar]
- S.N. Ethier and T.G. Kurtz, Markov processes. John Wiley & Sons Inc., New York (1986). [Google Scholar]
- G.B. Folland, Real analysis. John Wiley & Sons, Inc., New York (1984). [Google Scholar]
- G. Fort and G.O. Roberts, Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15 (2005) 1565–1589. [CrossRef] [MathSciNet] [Google Scholar]
- B. Franke, The scaling limit behaviour of periodic stable-like processes. Bernoulli 12 (2006) 551–570. [CrossRef] [MathSciNet] [Google Scholar]
- B. Franke, Correction to: The scaling limit behaviour of periodic stable-like processes [Bernoulli 12 (2006) 551–570]. Bernoulli 13 (2007) 600. [CrossRef] [MathSciNet] [Google Scholar]
- A. Friedman, Wandering out to infinity of diffusion processes. Trans. Amer. Math. Soc. 184 (1973) 185–203. [MathSciNet] [Google Scholar]
- A. Friedman, Stochastic differential equations and applications. Vol. 1. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1975). [Google Scholar]
- M. Hairer, Convergence of Markov processes. Lecture notes. University of Warwick. Available on http://www.hairer.org/notes/Convergence.pdf (2010). [Google Scholar]
- Y. Ishikawa, Density estimate in small time for jump processes with singular Lévy measures. Tohoku Math. J. 53 (2001) 183–202. [CrossRef] [MathSciNet] [Google Scholar]
- N. Jacob, Pseudo differential operators and Markov processes. Vol. I. Imperial College Press, London (2001). [Google Scholar]
- N. Jacob, Pseudo differential operators and Markov processes. Vol. III. Imperial College Press, London (2005). [Google Scholar]
- V.P. Knopova and A.M. Kulik, The parametrix method and the weak solution to an SDE driven by an α-stable noise. Preprint arXiv:1412.1732 (2014). [Google Scholar]
- V.P. Knopova and R.L. Schilling, Transition density estimates for a class of Lévy and Lévy-type processes. J. Theoret. Probab. 25 (2012) 144–170. [CrossRef] [MathSciNet] [Google Scholar]
- V.P. Knopova and R.L. Schilling, A note on the existence of transition probability densities of Lévy processes. Forum Math. 25 (2013) 125–149. [CrossRef] [MathSciNet] [Google Scholar]
- V.N. Kolokoltsov, Symmetric stable laws and stable-like jump-diffusions. Proc. London Math. Soc. 80 (2000) 725–768. [CrossRef] [MathSciNet] [Google Scholar]
- V.N. Kolokoltsov, Markov processes, semigroups and generators. Vol. 38. Walter de Gruyter & Co., Berlin (2011). [Google Scholar]
- A.M. Kulik, Stochastic calculus of variations for general Lévy processes and its applications to jump-type SDE’s with non-degenerated drift. Preprint arXiv:0606427 (2007). [Google Scholar]
- P. Mandl, Analytical treatment of one-dimensional Markov processes. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York (1968). [Google Scholar]
- H. Masuda, On multidimensional Ornstein–Uhlenbeck processes driven by a general Lévy process. Bernoulli 10 (2004) 97–120. [CrossRef] [MathSciNet] [Google Scholar]
- H. Masuda, Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps. Stochastic Process. Appl. 117 (2007) 35–56. [Google Scholar]
- H. Masuda, Erratum to: Ergodicity and exponential β-mixing bound for multidimensional diffusions with jumps [Stochastic Process. Appl. 117 (2007) 35–56]. Stochastic Process. Appl. 119 (2009) 676–678. [CrossRef] [MathSciNet] [Google Scholar]
- S.P. Meyn and R.L. Tweedie, Generalized resolvents and Harris recurrence of Markov processes. In Vol. 149 of Doeblin and modern probability (Blaubeuren, 1991). Amer. Math. Soc., Providence, RI (1993) 227–250. [Google Scholar]
- S.P. Meyn and R.L. Tweedie, Stability of Markovian processes. II. Continuous-time processes and sampled chains. Adv. Appl. Probab. 25 (1993) 487–517. [CrossRef] [MathSciNet] [Google Scholar]
- S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability, 2nd edition. Cambridge University Press, Cambridge (2009). [Google Scholar]
- G. Pang and N. Sandrić, Ergodicity and fluctuations of a fluid particle driven by diffusions with jumps. Commun. Math. Sci. 14 (2016) 327–362. [CrossRef] [MathSciNet] [Google Scholar]
- J. Picard, On the existence of smooth densities for jump processes. Probab. Theory Related Fields 105 (1996) 481–511. [CrossRef] [MathSciNet] [Google Scholar]
- J. Picard, Erratum to: On the existence of smooth densities for jump processes. Probab. Theory Related Fields 147 (2010) 711–713. [CrossRef] [MathSciNet] [Google Scholar]
- L.C.G. Rogers and D. Williams, Diffusions, Markov processes, and martingales. Vol. 2 of Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000). [Google Scholar]
- N. Sandrić, Long-time behavior of stable-like processes. Stochastic Process. Appl. 123 (2013) 1276–1300. [CrossRef] [MathSciNet] [Google Scholar]
- N. Sandrić, Recurrence and transience property for a class of Markov chains. Bernoulli 19 (2013) 2167–2199. [CrossRef] [MathSciNet] [Google Scholar]
- N. Sandrić, Ergodic property of stable-like Markov chains. J. Theoret. Probab. 29 (2016) 459–490. [CrossRef] [MathSciNet] [Google Scholar]
- N. Sandrić, Recurrence and transience criteria for two cases of stable-like Markov chains. J. Theoret. Probab. 27 (2014) 754–788. [CrossRef] [MathSciNet] [Google Scholar]
- N. Sandrić, Long-time behavior for a class of feller processes. Trans. Am. Math. Soc. 368 (2016) 1871–1910. [CrossRef] [Google Scholar]
- K.-I. Sato, Lévy processes and infinitely divisible distributions. Vol. 68. Cambridge University Press, Cambridge (1999). [Google Scholar]
- K.-I. Sato, T. Watanabe and M. Yamazato, Recurrence conditions for multidimensional processes of Ornstein–Uhlenbeck type. J. Math. Soc. Japan 46 (1994) 245–265. [CrossRef] [MathSciNet] [Google Scholar]
- K.-I. Sato and M. Yamazato, Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type. Stochastic Process. Appl. 17 (1984) 73–100. [CrossRef] [MathSciNet] [Google Scholar]
- R.L. Schilling, Conservativeness and extensions of feller semigroups. Positivity 2 (1998) 239–256. [CrossRef] [MathSciNet] [Google Scholar]
- R.L. Schilling, Growth and Hölder conditions for the sample paths of Feller processes. Probab. Theory Related Fields 112 (1998) 565–611. [CrossRef] [MathSciNet] [Google Scholar]
- R.L. Schilling and J. Wang, Strong Feller continuity of Feller processes and semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 (2012) 1250010. [CrossRef] [MathSciNet] [Google Scholar]
- R.L. Schilling and J. Wang, Some theorems on Feller processes: transience, local times and ultracontractivity. Trans. Amer. Math. Soc. 365 (2013) 3255–3268. [CrossRef] [MathSciNet] [Google Scholar]
- S.-J. Sheu, Some estimates of the transition density of a nondegenerate diffusion Markov process. Ann. Probab. 19 (1991) 538–561. [CrossRef] [Google Scholar]
- T. Shiga, A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type. Probab. Theory Related Fields 85 (1990) 425–447. [CrossRef] [MathSciNet] [Google Scholar]
- O. Stramer and R.L. Tweedie, Stability and instability of continuous-time Markov processes. In Probability, Statistics and Optimisation. Wiley, Chichester (1994) 173–184. [Google Scholar]
- O. Stramer and R.L. Tweedie, Existence and stability of weak solutions to stochastic differential equations with non-smooth coefficients. Statist. Sinica 7 (1997) 577–593. [MathSciNet] [Google Scholar]
- P. Tuominen and R.L. Tweedie, Subgeometric rates of convergence of f-ergodic Markov chains. Adv. Appl. Probab. 26 (1994) 775–798. [CrossRef] [MathSciNet] [Google Scholar]
- R.L. Tweedie, Topological conditions enabling use of Harris methods in discrete and continuous time. Acta Appl. Math. 34 (1994) 175–188. [CrossRef] [MathSciNet] [Google Scholar]
- A.Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations. Stochastic Process. Appl. 70 (1997) 115–127. [CrossRef] [MathSciNet] [Google Scholar]
- A.Yu. Veretennikov, On polynomial mixing and the rate of convergence for stochastic differential and difference equations. Theory Probab. Appl. 44 (2000) 361–374. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang, Criteria for ergodicity of Lévy type operators in dimension one. Stochastic Process. Appl. 118 (2008) 1909–1928. [CrossRef] [MathSciNet] [Google Scholar]
- I.S. Wee, Stability for multidimensional jump-diffusion processes. Stochastic Process. Appl. 80 (1999) 193–209. [CrossRef] [MathSciNet] [Google Scholar]
- I.S. Wee, Recurrence and transience for jump-diffusion processes. Stochastic Anal. Appl. 18 (2000) 1055–1064. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.