Free Access
Issue
ESAIM: PS
Volume 19, 2015
Page(s) 327 - 360
DOI https://doi.org/10.1051/ps/2014028
Published online 09 October 2015
  1. E. Bacry, A. Kozhemyak and J.F. Muzy, Log-normal continuous cascade model of asset returns: aggregation properties and estimation. Quant. Finance 13 (2013) 795–818. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Bacry and J.F. Muzy, Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (2003) 449–475. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Belinschi, A. Dembo and A. Guionnet, Spectral measure of heavy tailed band and covariance random matrices. Comm. Math. Phys. 289 (2009) 1023–1055. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Ben Arous and A. Guionnet, The spectrum of heavy-tailed random matrices. Comm. Math. Phys. 278 (2008) 715–751. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.P. Bouchaud, A. Matacz and M. Potters, Leverage effect in financial markets: The retarded volatility model. Phys. Rev. Lett. 87 (2001) 228701. [CrossRef] [PubMed] [Google Scholar]
  6. J.P. Bouchaud and M. Potters, Financial Applications of Random Matrix Theory: A Short Review. In Oxf. Handb. Random Matrix Theory. Oxford University Press (2011). [Google Scholar]
  7. J.P. Bouchaud and M. Potters, Theory of Financial Risk and Derivative Pricing. Cambridge University Press, Cambridge (2003). [Google Scholar]
  8. R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Finance 1 (2001) 223–236. [Google Scholar]
  9. J.S. Geronimo, T.P. Hill, Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform. J. Approx. Theory 121 (2003) 54–60. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Khorunzhy, B. Khoruzhenko, L. Pastur and M. Shcherbina, The large-n limit in statistical mechanics and the spectral theory of disordered systems. Phase Transitions and Critical Phenomena. In vol. 73. Academic Press, New-York (1992). [Google Scholar]
  11. Y. Li and X. Zheng, On the estimation of integrated covariance matrices of high dimensional diffusion processes. Ann. Statist. 39 (2011) 3121–3151. [CrossRef] [MathSciNet] [Google Scholar]
  12. V.A. Marchenko and L.A. Pastur, Distribution of eigenvalues for some sets of random matrices. Math. USSR-Sb. 1 (1967) 457–483. [Google Scholar]
  13. R. Rhodes and V. Vargas., Gaussian multiplicative chaos and applications: a review. ESAIM: PS 11 (2014) 315–392. [Google Scholar]
  14. C. Robert and M. Rosenbaum, On the limiting spectral distribution of the covariance matrices of time-lagged processes. J. Multivar. Anal. 101 (2010) 2434–2451. [CrossRef] [Google Scholar]
  15. M. Potters, J.-P. Bouchaud and L. Laloux, Financial applications of random matrix theory: Old laces and new pieces. Acta Physica Polonica B 36 (2005) 2767. [MathSciNet] [Google Scholar]
  16. J. Duchon, R. Robert and V. Vargas, Forecasting volatility with the multifractal random walk model. Math. Finance 22 (2012) 83–108. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.