Free Access
Issue |
ESAIM: PS
Volume 19, 2015
|
|
---|---|---|
Page(s) | 307 - 326 | |
DOI | https://doi.org/10.1051/ps/2014027 | |
Published online | 06 October 2015 |
- S. Alili, Asymptotic behaviour for random walk in random environments. J. Appl. Probab. 36 (1999) 334–349. [CrossRef] [Google Scholar]
- K.B. Athreya and S. Karlin, On branching processes with random environments, I: extinction probability. Ann. Math. Stat. 42 (1971) 1499–1520. [CrossRef] [Google Scholar]
- K.B. Athreya and S. Karlin, On branching processes with random environments, II: limit theorems. Ann. Math. Stat. 42 (1971) 1843–1858. [CrossRef] [Google Scholar]
- K.B. Athreya and H.J. Kang, Some limit theorems for positive recurrent branching Markov chains I, II. Adv. Appl. Probab. 30 (1998) 693–722. [CrossRef] [Google Scholar]
- V. Bansaye, Proliferating parasites in dividing cells: Kimmel’s branching model revisited. Ann. Appl. Probab. 18 (2008) 967–996. [CrossRef] [Google Scholar]
- V. Bansaye and V.C. Tran, Branching feller diffusion for cell division with parasite infection. ALEA 8 (2011) 95–127. [Google Scholar]
- V. Bansaye, J-F. Delmas, L. Marsalle and V.C. Tran, Limit theorems for Markov processes indexed by supercritical Galton Watson tree. Ann. Appl. Probab. 21 (2011) 2263–2314. [CrossRef] [Google Scholar]
- B. Bercu, B. De Saporta and A. Gégout-Petit, Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. Electr. J. Probab. 14 (2009) 2492–2526. [Google Scholar]
- J.D. Biggins, Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25–37. [CrossRef] [Google Scholar]
- J.D. Biggins, Chernoff’s theorem in the branching random walk. J. Appl. Probab. 14 (1977) 630–636. [CrossRef] [Google Scholar]
- J.D. Biggins, The central limit theorem for the supercritical branching random walk, and related results. Stoch. Proc. Appl. 34 (1990) 255–274. [CrossRef] [Google Scholar]
- F. Comets and S. Popov, Shape and local growth for multidimensional branching random walks in random environment. ALEA 3 (2007) 273–299. [Google Scholar]
- F. Comets and N. Yoshida, Branching random walks in space-time random environment: survival probability, global and local growth rates. J. Theor. Probab. 24 (2011) 657–687. [CrossRef] [Google Scholar]
- J-F. Delmas and L. Marsalle, Detection of cellular aging in a Galton-Watson process. Stoch. Proc. Appl. 120 (2010) 2495–2519. [Google Scholar]
- M. Doumic, M. Hoffmann, N. Krell and L. Robert, Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Bernoulli 21 (2015) 1760–1799. [CrossRef] [MathSciNet] [Google Scholar]
- H. Fréville, B. Colas, M. Riba, H. Caswell, A. Mignot, E. Imbert and I. Olivieri, Spatial and demographic variability in the endemic plant species Centaurea Corymbosa (Asteraceae). Ecology 85 (2004) 694–703. [CrossRef] [Google Scholar]
- L. Gallardo, A central limit theorem for Markov chains and applications to hypergroups. Proc. Am. Math. Soc. 127 (1999) 1837–1845. [CrossRef] [Google Scholar]
- N. Gantert, S. Müller, S. Popov and M. Vachkovskaia, Survival of branching random walks in random environment. J. Theor. Probab. 23 (2010) 1002–1014. [CrossRef] [Google Scholar]
- J. Guyon, Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538–1569. [CrossRef] [Google Scholar]
- S.C. Harris and M. Roberts, The many-to-few lemma and multiple spines. Preprint available via http://arxiv.org/abs/1106.4761 (2014). [Google Scholar]
- C. Huang, Q. Liu, Convergence in Lp and its exponential rate for a branching process in a random environment. Electron. J. Probab. 19 (2014) 1–22. [CrossRef] [MathSciNet] [Google Scholar]
- C. Huang and Q. Liu, Branching random walk with a random environment in time. Preprint available via http://arxiv.org/abs/1407.7623 (2014). [Google Scholar]
- N. Lartillot and R. Poujol, A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters. Mol. Biol. Evol. 28 (2010) 729–744. [CrossRef] [PubMed] [Google Scholar]
- Q. Liu, Branching random walks in random environment, in Proc. of the 4th International Congress of Chinese Mathematicians. Edited by L. Ji, K. Liu, L. Yang and S.-T. Yau, Vol. II (2007) 702–719. [Google Scholar]
- S.P. Meyn and R.L. Tweedie, Stability of Markovian processes I: criteria for discrete-time chains. Adv. Appl. Probab. 24 (1992) 542–574. [CrossRef] [Google Scholar]
- F. Mukhamedov, On L1-weak ergodicity of nonhomogeneous discrete Markov processes and its applications. Available via http://arxiv.org/abs/1105.0478 (2012). [Google Scholar]
- S. Müller, A criterion for transience of multidimensional branching random walk in random environment. Electr. J. Probab. 13 (2008) 1189–1202. [Google Scholar]
- M. Nakashima, Almost sure central limit theorem for branching random walks in random environment. Ann. Appl. Probab. 21 (2011) 351–373. [CrossRef] [Google Scholar]
- S. Orey, Markov chains with stationary Markov transition probabilities. Ann. Probab. 19 (1991) 907–928. [CrossRef] [Google Scholar]
- H. Pan, Law of large number for even-odd Markov chain fields and a three times circulation Markov chain indexed by a tree. Ph.D. thesis (2010). http://globethesis.com/?t=2120360302966543. [Google Scholar]
- T. Seppäläinen, Large deviations for Markov chains with random transitions. Ann. Probab. 22 (1994) 713–748. [CrossRef] [Google Scholar]
- D.-A. Sinclair and L. Guarente, Extrachromosomal rDNA circles– a cause of aging in yeast. Cell 91 (1997) 1033–1042. [CrossRef] [PubMed] [Google Scholar]
- T. Stadler, Inferring speciation and extinction processes from extant species data. Proc. Natl. Acad. Sci. 108 (2011) 16145–16146. [CrossRef] [Google Scholar]
- E.J. Stewart, R. Madden, G. Paul and F. Taddei, Aging and death in a organism that reproduces by morphologically symmetric division. PLoS Biol. 3 (2005) e45. [Google Scholar]
- N. Yoshida, Central limit theorem for random walk in random environment. Ann. Appl. Probab. 18 (2008) 1619–1635. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.