Free Access
Volume 19, 2015
Page(s) 361 - 394
Published online 26 October 2015
  1. S. Asmussen and P.W. Glynn, Stochastic Simulation: Algorithms and Analysis. Springer (2007). [Google Scholar]
  2. S.K. Au and J.L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation. J. Probab. Engrg. Mech. 16 (2001) 263–277. [Google Scholar]
  3. C.E. Bréhier, M. Gazeau, L. Goudenège, T. Lelièvre and M. Rousset, Unbiasedness of some generalized Adaptive Multilevel Splitting algorithms. Preprint arXiv:1505.02674 (2015). [Google Scholar]
  4. F. Cérou and A. Guyader, Adaptive multilevel splitting for rare event analysis. Stoch. Anal. Appl. 25 (2007) 417–443. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Cérou and A. Guyader, Adaptive particle techniques and rare event estimation. In Conf. Oxford sur les méthodes de Monte Carlo séquentielles. Vol. 19 of ESAIM Proc. EDP Sciences, Les Ulis (2007) 65–72. [Google Scholar]
  6. F. Cérou, A. Guyader, T. Lelièvre and D. Pommier, A multiple replica approach to simulate reactive trajectories. J. Chem. Phys. 134 (2011) 054108. [CrossRef] [PubMed] [Google Scholar]
  7. F. Cérou, P. Del Moral, T. Furon and A. Guyader, Sequential Monte Carlo for rare event estimation. Stat. Comput. 22 (2012) 795–808. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Freidlin, Functional integration and partial differential equations. In vol. 109 of Ann. Math. Stud. Princeton University Press, Princeton, NJ (1985). [Google Scholar]
  9. P. Glasserman, P. Heidelberger, P. Shahabuddin and T. Zajic, Multilevel splitting for estimating rare event probabilities. Oper. Res. 47 (1999) 585–600. [CrossRef] [Google Scholar]
  10. A. Guyader, N. Hengartner and E. Matzner-Løber, Simulation and estimation of extreme quantiles and extreme probabilities. Appl. Math. Optim. 64 (2011) 171–196. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.M. Hammersley and D.C. Handscomb, Monte Carlo methods. Methuen and Co. Ltd. (1965). [Google Scholar]
  12. H. Kahn and T.E. Harris, Estimation of Particle Transmission by Random Sampling. National Bureau of Standards, Appl. Math. Ser. 12 (1951) 27–30. [Google Scholar]
  13. G. Rubino and B. Tuffin, Rare Event Simulation using Monte Carlo Methods. Wiley (2009). [Google Scholar]
  14. J. Skilling, Nested Sampling for General Bayesian Computation. Bayesian Anal. 1 (2006) 833–859. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.