Free Access
Volume 18, 2014
Page(s) 726 - 749
Published online 22 October 2014
  1. T. Aven and U. Jensen, Stochastic models in reliability, vol. 41 of Applications of Mathematics. Springer-Verlag, New York (1999). [Google Scholar]
  2. R. Azaïs, F. Dufour and A. Gégout-Petit, Nonparametric estimation of the conditional density of the inter-jumping times for piecewise-deterministic Markov processes. Preprint arXiv:1202.2212v2 (2012). [Google Scholar]
  3. A.K. Basu and D.K. Sahoo, On Berry-Esseen theorem for nonparametric density estimation in Markov sequences. Bull. Inform. Cybernet. 30 (1998) 25–39. [MathSciNet] [Google Scholar]
  4. D. Chafaï, F. Malrieu and K. Paroux, On the long time behavior of the TCP window size process. Stoch. Process. Appl. 120 (2010) 1518–1534. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Chiquet and N. Limnios, A method to compute the transition function of a piecewise deterministic Markov process with application to reliability. Statist. Probab. Lett. 78 (2008) 1397–1403. [CrossRef] [MathSciNet] [Google Scholar]
  6. S.J.M. Clémençon, Adaptive estimation of the transition density of a regular Markov chain. Math. Methods Statist. 9 (2000) 323–357. [MathSciNet] [Google Scholar]
  7. M.H.A. Davis, Markov models and optimization, vol. 49 of Monogr. Statist. Appl. Probab. Chapman & Hall, London (1993). [Google Scholar]
  8. P. Doukhan and M. Ghindès, Estimation de la transition de probabilité d’une chaîne de Markov Doëblin-récurrente. Étude du cas du processus autorégressif général d’ordre 1. Stoch. Process. Appl. 15 (1983) 271–293. [CrossRef] [Google Scholar]
  9. M. Doumic, M. Hoffmann, N. Krell and L. Robert, Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Preprint (2012). [Google Scholar]
  10. M. Duflo, Random iterative models. Appl. Math. Springer-Verlag, Berlin (1997). [Google Scholar]
  11. A. Genadot and M. Thieullen, Averaging for a fully coupled Piecewise Deterministic Markov Process in Infinite Dimensions. Adv. Appl. Probab. 44 3 (2012). [CrossRef] [Google Scholar]
  12. O. Hernández-Lerma, S.O. Esparza and B.S. Duran, Recursive nonparametric estimation of nonstationary Markov processes. Bol. Soc. Mat. Mexicana 33 (1988) 57–69. [MathSciNet] [Google Scholar]
  13. O. Hernández-Lerma and J.B. Lasserre, Markov chains and invariant probabilities, vol. 211 of Progr. Math. Birkhäuser Verlag, Basel (2003). [Google Scholar]
  14. J. Hu, W. Wu and S. Sastry, Modeling subtilin production in bacillus subtilis using stochastic hybrid systems. Hybrid Systems: Computation and Control. Edited by R. Alur and G.J. Pappas. Lect. Notes Comput. Sci. Springer-Verlag, Berlin (2004). [Google Scholar]
  15. C. Lacour, Adaptive estimation of the transition density of a Markov chain. Ann. Inst. Henri Poincaré, Probab. Statist. 43 (2007) 571–597. [CrossRef] [Google Scholar]
  16. C. Lacour, Nonparametric estimation of the stationary density and the transition density of a Markov chain. Stoch. Process. Appl. 118 (2008) 232–260. [Google Scholar]
  17. E. Liebscher, Density estimation for Markov chains. Statistics 23 (1992) 27–48. [CrossRef] [Google Scholar]
  18. E. Masry and L. Györfi, Strong consistency and rates for recursive probability density estimators of stationary processes. J. Multivariate Anal. 22 (1987) 79–93. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Meyn and R.L. Tweedie, Markov chains and stochastic stability, second edition. Cambridge University Press, Cambridge (2009). [Google Scholar]
  20. M. Rosenblatt, Density estimates and Markov sequences. In Nonparametric Techniques in Statistical Inference. Proc. of Sympos., Indiana Univ., Bloomington, Ind., 1969. Cambridge Univ. Press, London (1970), 199–213. [Google Scholar]
  21. G.G. Roussas, Nonparametric estimation in Markov processes. Ann. Inst. Statist. Math. 21 (1969) 73–87. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Van Ryzin, On strong consistency of density estimates. Ann. Math. Statist. 40 (1969) 1765–1772. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Yakowitz, Nonparametric density and regression estimation for Markov sequences without mixing assumptions. J. Multivariate Anal. 30 (1989) 124–136. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.