Free Access
Volume 18, 2014
Page(s) 750 - 769
Published online 22 October 2014
  1. H. Akaike, Information Theory and Extension of the Maximum Likelihood Principle. Second int. Symp. Inf. Theory (1973) 267–281. [Google Scholar]
  2. N. Akakpo, Estimating a discrete distribution via histogram selection. ESAIM: PS 15 (2011) 1–29. [CrossRef] [EDP Sciences] [Google Scholar]
  3. S. Arlot and P. Massart, Data-driven calibration of penalties for least-squares regression. J. Mach. Learn. Res. 10 (2009) 245–279. [Google Scholar]
  4. Y. Baraud and L. Birgé, Estimating the intensity of a random measure by histogram type estimators. Probab. Theory Relat. Fields (2009) 143 239–284. [CrossRef] [Google Scholar]
  5. A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301–413. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Biernacki, G. Celeux, G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 719–725. [Google Scholar]
  7. L. Birgé, Model selection for Poisson processes. In Asymptotics: particles, processes and inverse problems, Vol. 55 of IMS Lect. Notes Monogr. Ser.. Beachwood, OH: Inst. Math. Statist. (2007) 32–64. [Google Scholar]
  8. L. Birgé and P. Massart, From model selection to adaptive estimation, in Festschrift for Lucien Le Cam. New York, Springer (1997) 55–87. [Google Scholar]
  9. L. Birgé and P. Massart, Gaussian model selection. J. Eur. Math. Soc. 3 (2001) 203–268. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Probab. Theory Relat. Fields (2007) 138 33–73. [Google Scholar]
  11. J.V. Braun, R. Braun and H.G. Müller, Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Biometrika 87 (2000) 301–314. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.V. Braun, H.G. Muller, Statistical methods for DNA sequence segmentation. Stat. Sci. (1998) 142–162. [Google Scholar]
  13. Breiman, Friedman, Olshen, Stone: Classification and Regression Trees. Wadsworth and Brooks (1984). [Google Scholar]
  14. G. Castellan, Modified Akaikes criterion for histogram density estimation. Technical Report#9961 (1999). [Google Scholar]
  15. A. Cleynen, M. Koskas, E. Lebarbier, G. Rigaill and S. Robin, Segmentor3IsBack, an R package for the fast and exact segmentation of Seq-data. Algorithms for Molecular Biology (2014) [Google Scholar]
  16. N. Johnson, A. Kemp and S. Kotz, Univariate Discrete Distributions. John Wiley & Sons, Inc. (2005). [Google Scholar]
  17. R. Killick and I.A. Eckley, Changepoint: an R package for changepoint analysis. Lancaster University (2011). [Google Scholar]
  18. E. Lebarbier, Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Process. 85 (2005) 717–736. [CrossRef] [Google Scholar]
  19. T.M. Luong, Y. Rozenholc and G. Nuel, Fast estimation of posterior probabilities in change-point analysis through a constrained hidden Markov model. Comput. Stat. Data Anal. (2013). [Google Scholar]
  20. P. Massart, Concentration inequalities and model selection. In Lect. Notes Math. Springer Berlin/Heidelberg (2007). [Google Scholar]
  21. P. Reynaud-Bouret, Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities. Probab. Theory Relat. Fields 126 (2003) 103–153. [CrossRef] [Google Scholar]
  22. G. Rigaill, Pruned dynamic programming for optimal multiple change-point detection. ArXiv:1004.0887 2010, []. [Google Scholar]
  23. G. Rigaill, E. Lebarbier and S. Robin, Exact posterior distributions and model selection criteria for multiple change-point detection problems. Stat. Comput. 22 (2012) 917–929. [CrossRef] [Google Scholar]
  24. D. Risso, K. Schwartz, G. Sherlock and S. Dudoit, GC-Content Normalization for RNA-Seq Data. BMC Bioinform. 12 (2011) 480. [CrossRef] [Google Scholar]
  25. Y.C. Yao, Estimating the number of change-points via Schwarz’ criterion. Stat. Probab. Lett. 6 (1988) 181–189. [CrossRef] [MathSciNet] [Google Scholar]
  26. N.R. Zhang and D.O. Siegmund, A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics 63 (2007) 22–32. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.