Free Access
Volume 18, 2014
Page(s) 713 - 725
Published online 22 October 2014
  1. P. Diaconis and L. Saloff-Coste, Comparison theorems for reversible markov chains. Ann. Appl. Probab. 696 (1993). [Google Scholar]
  2. L. Fahrmeir and H. Kaufmann, Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. Ann. Statist. 13 (1985) 342–368. [CrossRef] [MathSciNet] [Google Scholar]
  3. F.G. Foster, On the stochastic matrices associated with certain queuing processes. Ann. Math. Statist. 24 (1953) 355–360. [CrossRef] [Google Scholar]
  4. J.P. Hobert and D. Marchev, A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms. Ann. Statist. 36 (2008) 532–554. [CrossRef] [MathSciNet] [Google Scholar]
  5. K. Itô, Stochastic processes. ISBN 3-540-20482-2. Lectures given at Aarhus University, Reprint of the 1969 original, edited and with a foreword by Ole E. Barndorff-Nielsen and Ken-iti Sato. Springer-Verlag, Berlin (2004). [Google Scholar]
  6. K. Kamatani, Local weak consistency of Markov chain Monte Carlo methods with application to mixture model. Bull. Inf. Cyber. 45 (2013) 103–123. [Google Scholar]
  7. K. Kamatani, Note on asymptotic properties of probit gibbs sampler. RIMS Kokyuroku 1860 (2013) 140–146. [Google Scholar]
  8. K. Kamatani, Local consistency of Markov chain Monte Carlo methods. Ann. Inst. Stat. Math. 66 (2014) 63–74. [CrossRef] [Google Scholar]
  9. J.S. Liu and C. Sabatti, Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika 87 (2000) 353–369. [CrossRef] [Google Scholar]
  10. Jun S. Liu and Ying Nian Wu, Parameter expansion for data augmentation. J. Am. Stat. Assoc. 94 (1999) 1264–1274. [CrossRef] [Google Scholar]
  11. X.-L. Meng and David van Dyk, Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika 86 (1999) 301–320. [CrossRef] [Google Scholar]
  12. Xiao-Li Meng and David A. van Dyk, Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika 86 (1999) 301–320. [CrossRef] [Google Scholar]
  13. S.P. Meyn and R.L. Tweedie, Markov Chains and Stochastic Stability. Springer (1993). [Google Scholar]
  14. Antonietta. Mira, Ordering, Slicing and Splitting Monte Carlo Markov Chains. Ph.D. thesis, University of Minnesota (1998). [Google Scholar]
  15. P.H. Peskun, Optimum monte-carlo sampling using markov chains. Biometrika 60 (1973) 607–612. [CrossRef] [Google Scholar]
  16. G.O. Roberts and J.S. Rosenthal, General state space markov chains and mcmc algorithms. Prob. Surveys 1 (2004) 20–71. [CrossRef] [Google Scholar]
  17. J.S. Rosenthal. Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Am. Stat. Assoc. 90 (1995) 558–566. [CrossRef] [Google Scholar]
  18. J.S. Rosenthal, Quantitative convergence rates of markov chains: A simple account. Electron. Commun. Probab. 7 (2002) 123–128. [CrossRef] [Google Scholar]
  19. V. Roy and J.P. Hobert, Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 (2007) 607–623. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. Tierney, Markov chains for exploring posterior distributions. Ann. Statist. 22 (1994) 1701–1762. [CrossRef] [MathSciNet] [Google Scholar]
  21. L. Tierney, A note on Metropolis-Hastings kernels for general state spaces. Ann. Appl. Probab. 8 (1998) 1–9. [CrossRef] [Google Scholar]
  22. Wai Kong Yuen. Applications of geometric bounds to the convergence rate of Markov chains on Rn. Stoch. Process. Appl. 87 20001–23. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.