Free Access
Issue
ESAIM: PS
Volume 18, 2014
Page(s) 365 - 399
DOI https://doi.org/10.1051/ps/2013042
Published online 03 October 2014
  1. V. Bansaye, Proliferating parasites in dividing cells: Kimmel’s branching model revisited. Ann. Appl. Probab. 18 (2008) 967–996. [CrossRef] [Google Scholar]
  2. I.V. Basawa and J. Zhou, Non-Gaussian bifurcating models and quasi-likelihood estimation. J. Appl. Probab. A 41 (2004) 55–64. [CrossRef] [Google Scholar]
  3. B. Bercu, B. de Saporta and A. Gégout-Petit, Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. Electron. J. Probab. 14 (2009) 2492–2526. [MathSciNet] [Google Scholar]
  4. V. Blandin, Asymptotic results for bifurcating random coefficient autoregressive processes (2012). Preprint ArXiv: 1204.2926. [Google Scholar]
  5. A. Brandt, The stochastic equation Yn + 1 = AnYn + Bn with stationary coefficients. Adv. Appl. Probab. 18 (1986) 211–220. [CrossRef] [Google Scholar]
  6. Q.M. Bui and R.M. Huggins, Inference for the random coefficients bifurcating autoregressive model for cell lineage studies. J. Statist. Plann. Inference 81 (1999) 253–262. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Cowan and R.G. Staudte, The bifurcating autoregressive model in cell lineage studies. Biometrics 42 (1986) 769–783. [CrossRef] [PubMed] [Google Scholar]
  8. B. de Saporta, Tail of the stationary solution of the stochastic equation Yn + 1 = anYn + bn with Markovian coefficients. Stochastic Process. Appl. 115 (2005) 1954–1978. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. de Saporta, A. Gégout-Petit and L. Marsalle, Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat. 5 (2011) 1313–1353. [CrossRef] [Google Scholar]
  10. B. de Saporta, A. Gégout Petit and L. Marsalle, Asymmetry tests for bifurcating autoregressive processes with missing data. Stat. Probab. Lett. 82 (2012) 1439–1444. [CrossRef] [Google Scholar]
  11. J.-F. Delmas and L. Marsalle, Detection of cellular aging in a Galton-Watson process. Stoch. Process. Appl. 120 (2010) 2495–2519. [Google Scholar]
  12. M. Duflo, Random iterative models, Applications of Mathematics, vol. 34. Springer-Verlag, Berlin (1997). [Google Scholar]
  13. J. Guyon, Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538–1569. [CrossRef] [Google Scholar]
  14. J. Guyon, A. Bize, G. Paul, E. Stewart, J.-F. Delmas and F. Taddéi, Statistical study of cellular aging, in CEMRACS 2004, mathematics and applications to biology and medicine, vol. 14, ESAIM: Proc. EDP Sci., Les Ulis (2005) 100–114 (electronic). [Google Scholar]
  15. P. Hall and C.C. Heyde, Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press Inc., New York (1980). [Google Scholar]
  16. J.D. Hamilton, Time series analysis. Princeton University Press, Princeton, NJ (1994). [Google Scholar]
  17. T.E. Harris, The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Springer-Verlag, Berlin (1963). [Google Scholar]
  18. R.M. Huggins, Robust inference for variance components models for single trees of cell lineage data. Ann. Statist. 24 (1996) 1145–1160. [CrossRef] [MathSciNet] [Google Scholar]
  19. R.M. Huggins and I.V. Basawa, Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab. 36 (1999) 1225–1233. [CrossRef] [Google Scholar]
  20. R.M. Huggins and I.V. Basawa, Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat. 42 (2000) 423–432. [CrossRef] [Google Scholar]
  21. R.M. Huggins and R.G. Staudte, Variance components models for dependent cell populations. J. AMS 89 (1994) 19–29. [Google Scholar]
  22. S.Y. Hwang and I.V. Basawa, Branching Markov processes and related asymptotics. J. Multivariate Anal. 100 (2009) 1155–1167. [Google Scholar]
  23. S.Y. Hwang and I.V. Basawa, Asymptotic optimal inference for multivariate branching-Markov processes via martingale estimating functions and mixed normality. J. Multivariate Anal. 102 (2011) 1018–1031. [CrossRef] [MathSciNet] [Google Scholar]
  24. Nicholls, D. F., and Quinn, B. G. Random coefficient autoregressive models: an introduction. In vol. 11, Lect. Notes Statist. Springer-Verlag, New York (1982). [Google Scholar]
  25. E. Stewart, R. Madden, G. Paul and F. Taddei, Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3 (2005) e45. [Google Scholar]
  26. C.Z. Wei, Adaptive prediction by least squares predictors in stochastic regression models with applications to time series. Ann. Statist. 15 (1987) 1667–1682. [CrossRef] [MathSciNet] [Google Scholar]
  27. J. Zhou and I.V. Basawa, Least-squares estimation for bifurcating autoregressive processes. Statist. Probab. Lett. 74 (2005) 77–88. [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Zhou and I.V. Basawa, Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Ser. Anal. 26 (2005) 825–842. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.