Free Access
Issue |
ESAIM: PS
Volume 18, 2014
|
|
---|---|---|
Page(s) | 342 - 364 | |
DOI | https://doi.org/10.1051/ps/2013040 | |
Published online | 03 October 2014 |
- G.E.P. Box and N.R. Draper, Empirical model-building and response surfaces. John Wiley and Sons (1987). [Google Scholar]
- R. Carnell, lhs: Latin Hypercube Samples (2009). R package version 0.5. [Google Scholar]
- W. Chen, R. Jin and A. Sudjianto, Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty. Vol. 127 of Transactions-American Society Of Mechanical Engineers Journal Of Mechanical Design (2005). [Google Scholar]
- R.I. Cukier, H.B. Levine and K.E. Shuler, Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 26 (1978) 1–42. [CrossRef] [Google Scholar]
- S. Da Veiga and F. Gamboa, Efficient estimation of sensitivity indices. J. Nonparametric Statist. 25 (2013) 573–595. [CrossRef] [Google Scholar]
- G.M. Dancik, mlegp: Maximum Likelihood Estimates of Gaussian Processes (2011). R package version 3.1.2. [Google Scholar]
- T. Hayfield and J.S. Racine, Nonparametric econometrics: The np package. J. Statist. Softw. 27 (2008). [Google Scholar]
- J.C. Helton, J.D. Johnson, C.J. Sallaberry and C.B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91 (2006) 1175–1209. [Google Scholar]
- T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52 (1996) 1–17. [CrossRef] [Google Scholar]
- I.A. Ibragimov and R.Z. Has’ Minskii, Statistical estimation–asymptotic theory. Vol. 16 of Appl. Math. Springer−Verlag, New York (1981). [Google Scholar]
- T. Ishigami and T. Homma, An importance quantification technique in uncertainty analysis for computer models, in Proc. of First International Symposium on Uncertainty Modeling and Analysis, 1990. IEEE (1990) 398–403. [Google Scholar]
- A. Janon, M. Nodet and C. Prieur, Certified reduced-basis solutions of viscous Burgers equations parametrized by initial and boundary values. ESAIM: M2AN 47 (2013) 317–348. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Janon, M. Nodet and C. Prieur, Uncertainties assessment in global sensitivity indices estimation from metamodels. Internat. J. Uncert. Quantification 4 (2014) 21–36. [CrossRef] [Google Scholar]
- W. Kahan, Pracniques: further remarks on reducing truncation errors. Commun. ACM 8 (1965) 40. [CrossRef] [Google Scholar]
- W.R. Madych and S.A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70 (1992) 94–114. [CrossRef] [MathSciNet] [Google Scholar]
- A. Marrel, B. Iooss, B. Laurent and O. Roustant, Calculations of sobol indices for the gaussian process metamodel. Reliab. Eng. Syst. Saf. 94 (2009) 742–751. [CrossRef] [Google Scholar]
- H. Monod, C. Naud and D. Makowski, Uncertainty and sensitivity analysis for crop models, in Chap. 4 of Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications. Edited by D. Wallach, D. Makowski and J. W. Jones. Elsevier (2006) 55–99. [Google Scholar]
- V.I. Morariu, B.V. Srinivasan, V.C. Raykar, R. Duraiswami and L.S. Davis, Automatic online tuning for fast gaussian summation, in Advances in Neural Information Processing Systems, NIPS (2008). [Google Scholar]
- N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook Mater. Model. (2005) 1523–1558. [Google Scholar]
- R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011). ISBN 3-900051-07-0. [Google Scholar]
- J. Racine, An efficient cross-validation algorithm for window width selection for nonparametric kernel regression. Commun. Stat. Simul. Comput. 22 (1993) 1107–1107. [CrossRef] [Google Scholar]
- A. Saltelli, K. Chan and E.M. Scott, Sensitivity analysis. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester (2000). [Google Scholar]
- A. Saltelli, S. Tarantola, F. Campolongo and M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models (2004). [Google Scholar]
- T. J. Santner, B. Williams and W. Notz, The Design and Analysis of Computer Experiments. Springer−Verlag (2003). [Google Scholar]
- R. Schaback, Mathematical results concerning kernel techniques. In Prep. 13th IFAC Symposium on System Identification, Rotterdam. Citeseer (2003) 1814–1819. [Google Scholar]
- M. Scheuerer, R. Schaback and M. Schlather, Interpolation of spatial data – a stochastic or a deterministic problem? Universität Göttingen (2011) http://num.math.uni-goettingen.de/schaback/research/papers/IoSD.pdf. [Google Scholar]
- I.M. Sobol, Sensitivity estimates for nonlinear mathematical models. Math. Modeling Comput. Experiment 1 (1995) 407–414, 1993. [Google Scholar]
- I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55 (2001) 271–280. [Google Scholar]
- C.B. Storlie, L.P. Swiler, J.C. Helton and C.J. Sallaberry, Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliab. Eng. Syst. Saf. 94 (2009) 1735–1763. [CrossRef] [Google Scholar]
- B. Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93 (2008) 964–979. [CrossRef] [Google Scholar]
- J.Y. Tissot and C. Prieur, A bias correction method for the estimation of sensitivity indices based on random balance designs. Reliab. Eng. Syst. Saf. (2010). [Google Scholar]
- A.W. van der Vaart, Asymptotic statistics. Vol. 3 of Cambr. Series Statist. Probab. Math. Cambridge University Press, Cambridge (1998). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.