Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 614 - 634
DOI https://doi.org/10.1051/ps/2012014
Published online 04 November 2013
  1. N. Bartoli and P. Del Moral, Simulation & Algorithmes Stochastiques. Cépaduès éditions (2001). [Google Scholar]
  2. L. Bertini, G. Giacomin and K. Pakdaman, Dynamical aspects of mean field plane rotators and the Kuramoto model. J. Stat. Phys. 138 (2010) 270–290. [CrossRef] [Google Scholar]
  3. F. Caron, P. Del Moral, A. Doucet and M. Pace, Particle approximations of a class of branching distribution arising in multi-target tracking. SIAM J. Contr. Optim. 49 (2011) 1766–1792. [CrossRef] [Google Scholar]
  4. F. Caron, P. Del Moral, M. Pace and B.-N. Vo, On the stability and the approximation of branching distribution flows, with applications to nonlinear multiple target filtering. Stoch. Anal. Appl. 29 (2011) 951–997. [CrossRef] [Google Scholar]
  5. J. Carrillo, R. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19 (2003) 971–1018. [CrossRef] [Google Scholar]
  6. J. Carrillo, R. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179 (2006) 217–263. [CrossRef] [Google Scholar]
  7. P. Cattiaux, A. Guillin and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Relat. Fields 140 (2008) 19–40. [CrossRef] [Google Scholar]
  8. D. Dawson, Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Statist. Phys. 31 (1983) 29–85. [CrossRef] [MathSciNet] [Google Scholar]
  9. R.L. Dobrushin, Central limit theorem for nonstationary Markov chains I. Theory Probab. Appl. 1 (1956) 65–80. [CrossRef] [Google Scholar]
  10. R.L. Dobrushin, Central limit theorem for nonstationary Markov chains II. Theory Probab. Appl. 1 (1956) 329–383. [CrossRef] [Google Scholar]
  11. A. Friedman and J.I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks. J. Math. Anal. Appl. 272 (2002) 138–163. [CrossRef] [Google Scholar]
  12. J. Gartner, On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137 (1988) 197–248. [CrossRef] [MathSciNet] [Google Scholar]
  13. K. Giesecke, K. Spiliopoulos and R. Sowers, Default clustering in large portfolios: typical events. Ann. Appl. Probab. 23 (2013) 348–385. [CrossRef] [Google Scholar]
  14. C. Graham and P. Robert, Interacting multi-class transmissions in large stochastic networks. Ann. Appl. Probab. 19 (2009) 2334–2361. [CrossRef] [Google Scholar]
  15. C.l Graham, J. Gomez-Serrano and J. Yves Le Boudec, The bounded confidence model of opinion dynamics (2010) arxiv.org/pdf/1006.3798. [Google Scholar]
  16. B. Latané and A. Nowak, Self-organizing social systems: Necessary and sufficient conditions for the emergence of clustering, consolidation, and continuing diversity. Prog. Commun. Sci. (1997) 43–74. [Google Scholar]
  17. F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13 (2003) 540–560. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Schweitzer, Brownian agents and active particles. Springer Series in Synergetics. Collective dynamics in the natural and social sciences, With a foreword by J. Doyne Farmer. Springer-Verlag, Berlin (2003). [Google Scholar]
  19. A. Stevens, Trail following and aggregation of myxobacteria. J. Biol. Syst. 3 (1995) 1059–1068. [CrossRef] [Google Scholar]
  20. A.-S. Sznitman, Topics in propagation of chaos, in École d’Été de Probabilités de Saint-Flour XIX—1989, vol. 1464 of Lect. Notes Math. Springer, Berlin (1991) 165–251. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.