Free Access
Volume 17, 2013
Page(s) 605 - 613
Published online 06 August 2013
  1. F. Balabdaoui and J.A. Wellner, Estimation of a k-monotone density: limit distribution theory and the spline connection. Ann. Stat. 35 (2007) 2536–2564. [CrossRef] [Google Scholar]
  2. F. Barthe and A. Koldobsky, Extremal slabs in the cube and the Laplace transform. Adv. Math. 174 (2003) 89–114. [CrossRef] [Google Scholar]
  3. F. Barthe, F. Gamboa, L. Lozada-Chang and A. Rouault, Generalized Dirichlet distributions on the ball and moments. ALEA – Latin Amer. J. Probab. Math. Stat. 7 (2010) 319–340. [Google Scholar]
  4. E.M.J. Bertin, I. Cuculescu and R. Theodorescu, Unimodality of Probability Measures. Kluwer, Dordrecht (1997). [Google Scholar]
  5. S. Dharmadhikari and K. Joag-dev, Unimodality, Convexity, and Applications. Academic, San Diego (1988). [Google Scholar]
  6. M.L. Eaton, A note on symmetric Bernoulli random variables. Ann. Math. Stat. 41 (1970) 1223–1226. [CrossRef] [Google Scholar]
  7. T. Figiel, P. Hitczenko, W.B. Johnson, G. Schechtman and J. Zinn, Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities. Trans. Amer. Math. Soc. 349 (1997) 997–1027. [CrossRef] [MathSciNet] [Google Scholar]
  8. T. Gneiting, Radial positive definite functions generated by Euclid’s hat. J. Multiv. Anal. 69 (1999) 88–119. [CrossRef] [Google Scholar]
  9. W. Hoeffding, The extrema of the expected value of a function of independent random variables. Ann. Math. Stat. 26 (1955) 268–275. [CrossRef] [Google Scholar]
  10. O. Johnson and C. Goldschmidt, Preservation of log-concavity on summation. ESAIM: PS 10 (2005) 206–215. [CrossRef] [EDP Sciences] [Google Scholar]
  11. A.Y. Khintchine, On unimodal distributions. Izv. Nauchno- Issled. Inst. Mat. Mech. Tomsk. Gos. Univ. 2 (1938) 1–7 (in Russian). [Google Scholar]
  12. C. Lefèvre and S. Loisel, On multiply monotone distributions, discrete or continuous, with applications. Working paper, ISFA, Université de Lyon 1 (2011). [Google Scholar]
  13. C. Lefèvre and S. Utev, Exact norms of a Stein-type operator and associated stochastic orderings. Probab. Theory Relat. Fields 127 (2003) 353–366. [CrossRef] [Google Scholar]
  14. P. Lévy, Extensions d’un théorème de D. Dugué et M. Girault. Wahrscheinlichkeitstheorie 1 (1962) 159–173. [CrossRef] [Google Scholar]
  15. A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications. Academic, New York (1979). [Google Scholar]
  16. A.G. Pakes and J. Navarro, Distributional characterizations through scaling relations. Aust. N. Z. J. Stat. 49 (2007) 115–135. [CrossRef] [Google Scholar]
  17. I. Pinelis, Toward the best constant factor for the Rademacher-Gaussian tail comparison. ESAIM: PS 11 (2007) 412–426. [CrossRef] [EDP Sciences] [Google Scholar]
  18. I. Podlubny, Fractional Differential Equations. Academic, San Diego (1999). [Google Scholar]
  19. E. Rio, Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants. Springer, Berlin (2000). [Google Scholar]
  20. M. Shaked and J.G. Shanthikumar, Stochatic Orders. Springer, New York (2007). [Google Scholar]
  21. S.A. Utev, Extremal problems in moment inequalities, in Limit Theorems of Probability Theory of Trudy Inst. Mat., vol. 5. Nauka Sibirsk. Otdel., Novosibirsk. (1985) 56–75 (in Russian). [Google Scholar]
  22. R.E. Williamson, Multiply monotone functions and their Laplace transforms. Duke Math. J. 23 (1956) 189–207. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Wintner, On a class of Fourier transforms. Amer. J. Math. 58 (1936) 45–90. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.