Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 592 - 604
DOI https://doi.org/10.1051/ps/2012011
Published online 06 August 2013
  1. S. Achard, R. Salvador, B. Whitcher, J. Suckling and E. Bullmore, A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26 (2006) 63–72. [CrossRef] [PubMed] [Google Scholar]
  2. S. Achard, D.S. Bassett, A. Meyer-Lindenberg and E. Bullmore, Fractal connectivity of long-memory networks. Phys. Rev. E 77 (2008) 036104. [CrossRef] [Google Scholar]
  3. P.O. Amblard and J.F. Coeurjolly, Identification of the multivariate fractional Brownian motion. IEEE Trans. Signal Process. 59 (2011) 5152–5168. [CrossRef] [Google Scholar]
  4. P.O. Amblard, J.F. Coeurjolly, F. Lavancier and A. Philippe, Basic properties of the multivariate fractional Brownian motion, edited by L. Chaumont. Séminaires et Congrès, Self-similar processes and their applications 28 (2012) 65–87. [Google Scholar]
  5. S. Arianos and A. Carbone, Cross-correlation of long range correlated series. J. Stat. Mech. (2009) P033037. [Google Scholar]
  6. A. Ayache, S. Leger and M. Pontier, Drap brownien fractionnaire. Potential Anal. 17 (2002) 31–43. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.M. Bardet, G. Lang, E. Moulines and P. Soulier, Wavelet estimator of long-range dependent processes. Stat. Inference Stoch. Process. 3 (2000) 85–99. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Chan and A.T.A. Wood, Simulation of stationary Gaussian vector fields. Stat. Comput. 9 (1999) 265–268. [CrossRef] [Google Scholar]
  9. J.F. Coeurjolly, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4 (2001) 199–227. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Didier and V. Pipiras, Integral representations of operator fractional Brownian motions. Bernouilli 17 (2011) 1–33. [CrossRef] [Google Scholar]
  11. G. Faÿ, E. Moulines, F. Roueff and M.S. Taqqu, Estimators of long-memory: Fourier versus wavelets. J. Econ. 151 (2009) 159–177. [Google Scholar]
  12. P. Flandrin, On the spectrum of fractional Brownian motions. IEEE Trans. Inf. Theory 35 (1988) 197–199. [CrossRef] [Google Scholar]
  13. P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. Inf. Theory 38 (1992) 910–917. [CrossRef] [MathSciNet] [Google Scholar]
  14. I.M. Gel’fand and G.E. Shilov, Generalized functions. Properties and Operations 1 (1964). [Google Scholar]
  15. L.A. Gil-Alana, A fractional multivariate long memory model for the US and the Canadian real output. Econ. Lett. 81 (2003) 355–359. [CrossRef] [Google Scholar]
  16. T. Kato and E. Masry, On the spectral density of the wavelet transform of fractional Brownian motions. J. Time Ser. Anal. 20 (1999) 560–563. [CrossRef] [Google Scholar]
  17. F. Lavancier, A. Philippe and D. Surgailis, Covariance function of vector self-similar processes. Stat. Probab. Lett. 79 (2009) 2415–2421. [CrossRef] [Google Scholar]
  18. B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422–437. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  19. R.F. Peltier and J. Lévy-Véhel, Multifractional Brownian motion: definition and preliminary results. Rapport Recherche INRIA (1995). [Google Scholar]
  20. A.H. Tewfik and M. Kim, Correlation structure of the discrete wavelet coefficients of fractional Brownian motion. IEEE Trans. Inf. Theory 38 (1992) 904–909. [CrossRef] [Google Scholar]
  21. D. Veitch and P. Abry, Wavelet-based joint estimate of the long-range dependence parameters. IEEE Trans. Inf. Theory 45 (1999) 878–897. [CrossRef] [Google Scholar]
  22. B. von Bahr and C.G. Esseen, Inequalities for the rth absolute moment of a sum of random variables, 1 ≤ r ≤ 2. Ann. Math. Stat. 36 (1965) 299–303. [CrossRef] [MathSciNet] [Google Scholar]
  23. G.W. Wornell, A Karhunen-Loève-like expansion for 1 / f processes via wavelets. IEEE Trans. Inf. Theory 36 (1990) 861–863. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.