Free Access
Volume 17, 2013
Page(s) 567 - 591
Published online 01 August 2013
  1. J. Bertoin, Lévy Processes. Cambridge University Press, Cambridge (1996). [Google Scholar]
  2. H. Biermé, A. Estrade and I. Kaj, Self-similar random fields and rescaled random balls models. J. Theor. Prob. 23 (2010) 1110–1141. [CrossRef] [MathSciNet] [Google Scholar]
  3. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation. Cambridge University Press, Cambridge (1987). [Google Scholar]
  4. D.J. Daley and D. Vere-Jones, An introduction to the theory of point processes, in Elementary theory and methods I. Probab. Appl. 2nd edition. Springer-Verlag (2003). [Google Scholar]
  5. C. Dombry and I. Kaj, The on-off network traffic model under intermediate scaling. Queuing Syst. 69 (2011) 29–44. [CrossRef] [Google Scholar]
  6. R. Gaigalas. A Poisson bridge between fractional Brownian motion and stable Lévy motion. Stoch. Proc. Appl. 116 (2006) 447–462. [CrossRef] [Google Scholar]
  7. R. Gaigalas and I. Kaj, Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9 (2003) 671–703. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Grimmett, Weak convergence using higher-order cumulants. J. Theor. Prob. 5 (1992) 767–773. [CrossRef] [Google Scholar]
  9. I. Kaj and A. Martin-Löf, Scaling limit results for the sum of many inverse Lévy subordinators. arXiv:1203.6831 [math.PR] (2012). [Google Scholar]
  10. I. Kaj and M.S. Taqqu, Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach, in: In an Out of Equilibrium 2, Progress Probability, vol. 60 edited by M.E. Vares and V. Sidoravicius. Birkhauser (2008) 383–427. [Google Scholar]
  11. O. Kallenberg. Foundations of Modern Probability, 2nd edition. Springer-Verlag, New York (2002). [Google Scholar]
  12. J.B. Lévy and M.S. Taqqu, Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards. Bernoulli 6 (2000) 23–44. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Mikosch, S. Resnick, H. Rootzen and A. Stegeman,Is network traffic approximated by stable Lévy motion or fractional Brownian motion. Ann. Appl. Probab. 12 (2002) 23–68. [CrossRef] [MathSciNet] [Google Scholar]
  14. V. Pipiras and M.S. Taqqu, The limit of a renewal-reward process with heavy-tailed rewards is not a linear fractional stable motion. Bernoulli 6 (2000) 607–614. [CrossRef] [MathSciNet] [Google Scholar]
  15. V. Pipiras, M.S. Taqqu and J.B. Lévy, Slow, fast and arbitrary growth conditions for renewal reward processes when the renewals and the rewards are heavy-tailed. Bernoulli 10 (2004) 121–163. [CrossRef] [MathSciNet] [Google Scholar]
  16. S.I. Resnick, Extreme values, regular variation, and point processes. Springer, New York (1987). [Google Scholar]
  17. S.I. Resnick, Heavy-tail phenomena, Probabilistic and statistical modeling. Springer Series in Operations Research and Financial Engineering. Springer, New York (2007). [Google Scholar]
  18. G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes. Chapman and Hall (1994). [Google Scholar]
  19. M.S. Taqqu, W. Willinger and R. Sherman, Proof of a fundamental result in self-similar traffic modeling. Comput. Commun. Rev. 27 (1997) 5–23. [CrossRef] [Google Scholar]
  20. J.L. Teugels, Renewal theorems when the first and the second moment is infinite. Ann. Math. Statist. 39 (1968) 1210–1219. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.